Singular Levi-flat Hypersurfaces and Codimension One Foliations

نویسنده

  • MARCO BRUNELLA
چکیده

We study Levi-flat real analytic hypersurfaces with singularities. We prove that the Levi foliation on the regular part of the hypersurface can be holomorphically extended, in a suitable sense, to neighbourhoods of singular

منابع مشابه

LOCAL LEVI-FLAT HYPERSURFACES INVARIANTS BY A CODIMENSION ONE HOLOMORPHIC FOLIATION By D. CERVEAU and A. LINS NETO

In this paper we study codimension one holomorphic foliations leaving invariant real analytic hypersurfaces. In particular, we prove that a germ of real analytic Levi-flat hypersurface with sufficiently “small” singular set is given by the zeroes of the imaginary part of a holomorphic function.

متن کامل

On the Dynamics of Codimension One Holomorphic Foliations with Ample Normal Bundle

We investigate the accumulation to singular points of leaves of codimension one foliations whose normal bundle is ample, with emphasis on the nonexistence of Levi-flat hypersurfaces.

متن کامل

Nowhere Minimal Cr Submanifolds and Levi-flat Hypersurfaces

A local uniqueness property of holomorphic functions on realanalytic nowhere minimal CR submanifolds of higher codimension is investigated. A sufficient condition called almost minimality is given and studied. A weaker necessary condition, being contained a possibly singular real-analytic Levi-flat hypersurface is studied and characterized. This question is completely resolved for algebraic sub...

متن کامل

ar X iv : 0 80 5 . 17 63 v 2 [ m at h . C V ] 1 4 Ju l 2 00 9 SINGULAR LEVI - FLAT HYPERSURFACES IN COMPLEX PROJECTIVE SPACE

We study singular real-analytic Levi-flat hypersurfaces in complex projective space. We give necessary and sufficient conditions for such a hypersurface to be a pullback of a real-analytic curve in C via a meromorphic function. We define the rank of a real hypersurface and study the connections between rank, degree, and the type and size of the singularity for Levi-flat hypersurfaces. Finally, ...

متن کامل

A Characterization of Hyperbolic Kato Surfaces

We give a characterization of hyperbolic Kato surfaces in terms of the existence of an automorphic Green function on a cyclic covering. This is achieved by analysing a naturally defined Levi-flat foliation, and by perturbing certain Levi-flat leaves to strictly pseudoconvex hypersurfaces. 2010 Mathematics Subject Classification: Kato surfaces, Levi-flat foliations, plurisubharmonic functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007