Phase Measuring Deflectometry: a new approach to measure specular free-form surfaces

نویسندگان

  • Markus C. Knauer
  • Jürgen Kaminski
  • Gerd Häusler
چکیده

We present a new method to measure specular free-form surfaces within seconds. We call the measuring principle ‘Phase Measuring Deflectometry’ (PMD). With a stereo based enhancement of PMD we are able to measure both the height and the slope of the surface. The basic principle is to project sinusoidal fringe patterns onto a screen located remotely from the surface under test and to observe the fringe patterns reflected via the surface. Any slope variations of the surface lead to distortions of the patterns. Using well-known phase-shift algorithms, we can precisely measure these distortions and thus calculate the surface normal in each pixel. We will deduce the method’s diffraction-theoretical limits and explain how to reach them. A major challenge is the necessary calibration. We solved this task by combining various photogrammetric methods. We reach a repeatability of the local slope down to a few arc seconds and an absolute accuracy of a few arc minutes. One important field of application is the measurement of the local curvature of progressive eyeglass lenses. We will present experimental results and compare these results with the theoretical limits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vision and Modeling of Specular Surfaces

We present the combination of a sensor based on “Phase-Measuring Deflectometry” and a new numerical algorithm to obtain the shape of specular free-form surfaces. The sensor measures the local slope of the surface which then is used to reconstruct the object’s shape. The sensor is calibrated and yields absolute slope data. We solved the inherent ambiguity of deflectometric sensors using a novel ...

متن کامل

Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry

The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field...

متن کامل

Full-Field 3D Shape Measurement of Specular Surfaces by Direct Phase to Depth Relationship

This paper presents a new Phase Measuring Deflectometry (PMD) method to measure specular object having discontinuous surfaces. A mathematical model is established to directly relate absolute phase and depth, instead of phase and gradient. Based on the model, a hardware measuring system has been set up, which consists of a beam splitter to change the optical path, and two LCD screens to display ...

متن کامل

Full-Field 3D Shape Measurement of Specular Object Having Discontinuous Surfaces

This paper presents a novel Phase Measuring Deflectometry (PMD) method to measure specular objects having discontinuous surfaces. A mathematical model is established to directly relate the absolute phase and depth, instead of the phase and gradient. Based on the model, a hardware measuring system has been set up, which consists of a precise translating stage, a projector, a diffuser and a camer...

متن کامل

Infrared deflectometry for the inspection of diffusely specular surfaces

Deflectometry is a full-field gradient technique that lends itself very well to testing specular surfaces. It uses the geometry of specular reflection to determine the gradient of the surface under inspection. In consequence, a necessary precondition to apply deflectometry is the presence of at least partially specular reflection. Surfaces with larger roughness have increasingly diffuse reflect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004