Detection of linear algebra operations in polyhedral programs. (Reconnaissance d'opérations d'algèbre linéaire dans un programme polyédrique)

نویسنده

  • Guillaume Iooss
چکیده

DETECTION OF LINEAR ALGEBRA OPERATIONS IN POLYHEDRAL PROGRAMS Writing a code which uses an architecture at its full capability has become an increasingly difficult problem over the last years. For some key operations, a dedicated accelerator or a finely tuned implementation exists and delivers the best performance. Thus, when compiling a code, identifying these operations and issuing calls to their high-performance implementation is attractive. In this dissertation, we focus on the problem of detection of these operations. We propose a framework which detects linear algebra subcomputations within a polyhedral program. The main idea of this framework is to partition the computation in order to isolate different subcomputations in a regular manner, then we consider each portion of the computation and try to recognize it as a combination of linear algebra operations. We perform the partitioning of the computation by using a program transformation called monoparametric tiling. This transformation partitions the computation into blocks, whose shape is some homothetic scaling of a fixed-size partitioning. We show that the tiled program remains polyhedral while allowing a limited amount of parametrization: a single size parameter. This is an improvement compared to the previous work on tiling, that forced us to choose between these two properties. Then, in order to recognize computations, we introduce a template recognition algorithm. This template recognition algorithm is built on a state-of-the-art program equivalence algorithm. We also propose several extensions in order to manage some semantic properties. Finally, we combine these two previous contributions into a framework which detects linear algebra subcomputations. A part of this framework is a library of template, based on the BLAS specification. We demonstrate our framework on several applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mono-parametric Tiling is a Polyhedral Transformation

Tiling is a crucial program transformation with many benefits: it improves locality, exposes parallelism, allows for adjusting the ops-to-bytes balance of codes, and can be applied at multiple levels. Allowing tile sizes to be symbolic parameters at compile time has many benefits, including efficient autotuning, and run-time adaptability to system variations. For polyhedral programs, parametric...

متن کامل

Eigenvoices: A compact representation of speakers in model space

Titre francais: Voix propres: Vers une représentation compacte des locuteurs dans l'espace des modèles Traduction du titre des figures: Figure 1: Schéma bloc d'un système de reconnaissance de la parole Figure 2: Schéma général du système de voix propres 1 Summary: In this article, we present a new approach to modeling speaker-dependent systems. The approach was inspired by the eigenfaces techni...

متن کامل

Complete Program Synthesis for Linear Arithmetics

Program synthesis, or their fragments, is a way to write programs by providing only its meaning, without worrying about the implementation details. It avoids the drawback of writing sequential code, which might be di cult to check, error-prone or tedious. Our contribution is to provide complete program synthesis algorithms with unbounded data types in decidable theories. We present synthesis al...

متن کامل

Numerical Computation of Spectral Elements in Max-plus Algebra

We describe the specialization to max-plus algebra of Howard’s policy improvement scheme, which yields an algorithm to compute the solutions of spectral problems in the max-plus semiring. Experimentally, the algorithm shows a remarkable (almost linear) average execution time. Résumé: Nous spécialisons à l’algèbre max-plus l’itération sur les politiques de Howard, qui fournit un algorithme pour ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016