Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids.
نویسنده
چکیده
A nonequilibrium method for calculating the shear viscosity is presented. It reverses the cause-and-effect picture customarily used in nonequilibrium molecular dynamics: the effect, the momentum flux or stress, is imposed, whereas the cause, the velocity gradient or shear rate, is obtained from the simulation. It differs from other Norton-ensemble methods by the way in which the steady-state momentum flux is maintained. This method involves a simple exchange of particle momenta, which is easy to implement. Moreover, it can be made to conserve the total energy as well as the total linear momentum, so no coupling to an external temperature bath is needed. The resulting raw data, the velocity profile, is a robust and rapidly converging property. The method is tested on the Lennard-Jones fluid near its triple point. It yields a viscosity of 3.2-3.3, in Lennard-Jones reduced units, in agreement with literature results.
منابع مشابه
Nonequilibrium molecular dynamics simulation of shear viscosity by a uniform momentum source-and-sink scheme
0021-9991/$ see front matter 2012 Elsevier Inc http://dx.doi.org/10.1016/j.jcp.2012.04.017 ⇑ Corresponding author. Tel./fax: +86 10 6278 16 E-mail address: [email protected] (B.-Y. Ca A uniform momentum source-and-sink scheme of nonequilibrium molecular dynamics (NEMD) is developed to calculate the shear viscosity of fluids in this paper. The uniform momentum source and sink are realized by...
متن کاملEquilibrium and nonequilibrium dynamics of soft sphere fluids.
We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP flu...
متن کاملPrediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism.
Nonequilibrium molecular dynamics (NEMD) simulations were performed and the transient time correlation function (TTCF) method applied to calculate the shear viscosity of n-decane. Using the TTCF method we were able to calculate the viscosity at shear rate orders of magnitude lower than is possible by direct NEMD simulation alone. For the first time for a molecular fluid, we were able to simulat...
متن کاملEffects of shear and bulk viscosity on head-on collision of localized waves in high density compact stars
Head on collision of localized waves in cold and dense hadronic matter with and without shear and bulk viscosities is investigated. Non-relativistic dynamics of propagating waves is studied using the hydrodynamics description of the system and suitable equation of state. It will be shown that the localized waves are described by solutions of the Burgers equation. Simulations show that the propa...
متن کاملRheological Behavior of Water-Ethylene Glycol Based Graphene Oxide Nanofluids
Traditionally water-ethylene glycol mixture based nanofluids are used in cold regions as a coolant in the car radiators. In the present study, the rheological properties of water-ethylene glycol based graphene oxide nanofluid are studied using Non-Equilibrium Molecular Dynamics (NEMD) method at different temperatures, volume concentrations, and shear rates. NEMD simulations are perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 59 5 Pt A شماره
صفحات -
تاریخ انتشار 1999