Thermodynamic basis for the genome to capsid charge relationship in viral encapsidation.

نویسندگان

  • Christina L Ting
  • Jianzhong Wu
  • Zhen-Gang Wang
چکیده

We establish an appropriate thermodynamic framework for determining the optimal genome length in electrostatically driven viral encapsidation. Importantly, our analysis includes the electrostatic potential due to the Donnan equilibrium, which arises from the semipermeable nature of the viral capsid, i.e., permeable to small mobile ions but impermeable to charged macromolecules. Because most macromolecules in the cellular milieu are negatively charged, the Donnan potential provides an additional driving force for genome encapsidation. In contrast to previous theoretical studies, we find that the optimal genome length is the result of combined effects from the electrostatic interactions of all charged species, the excluded volume and, to a very significant degree, the Donnan potential. In particular, the Donnan potential is essential for obtaining negatively overcharged viruses. The prevalence of overcharged viruses in nature may suggest an evolutionary preference for viruses to increase the amount of genome packaged by utilizing the Donnan potential (through increases in the capsid radius), rather than high charges on the capsid, so that structural stability of the capsid is maintained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatic regulation of genome packaging in human hepatitis B virus.

Hepatitis B virus (HBV) is a contagious human pathogen causing liver diseases such as cirrhosis and hepatocellular carcinoma. An essential step during HBV replication is packaging of a pregenomic (pg) RNA within the capsid of core antigens (HBcAgs) that each contains a flexible C-terminal tail rich in arginine residues. Mutagenesis experiments suggest that pgRNA encapsidation hinges on its stro...

متن کامل

Packing nanomechanics of viral genomes.

We investigate the osmotic equilibrium between a bulk polyethylene glycol (PEG) solution and DNA tightly packed in a spherical capsid. We base our analysis on the equations of thermodynamic equilibrium in terms of osmotic pressure. The equality between external osmotic pressure of PEG and osmotic pressure of tightly packed DNA gives us the DNA encapsidation curves. In this way we directly conne...

متن کامل

An examination of the electrostatic interactions between the N-terminal tail of the Brome Mosaic Virus coat protein and encapsidated RNAs.

The coat protein of positive-stranded RNA viruses often contains a positively charged tail that extends toward the center of the capsid and interacts with the viral genome. Electrostatic interaction between the tail and the RNA has been postulated as a major force in virus assembly and stabilization. The goal of this work is to examine the correlation between electrostatic interaction and amoun...

متن کامل

Common mechanism for RNA encapsidation by negative-strand RNA viruses.

UNLABELLED The nucleocapsid of a negative-strand RNA virus is assembled with a single nucleocapsid protein and the viral genomic RNA. The nucleocapsid protein polymerizes along the length of the single-strand genomic RNA (viral RNA) or its cRNA. This process of encapsidation occurs concomitantly with genomic replication. Structural comparisons of several nucleocapsid-like particles show that th...

متن کامل

Viral genome structures are optimal for capsid assembly

Understanding how virus capsids assemble around their nucleic acid (NA) genomes could promote efforts to block viral propagation or to reengineer capsids for gene therapy applications. We develop a coarse-grained model of capsid proteins and NAs with which we investigate assembly dynamics and thermodynamics. In contrast to recent theoretical models, we find that capsids spontaneously 'overcharg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 41  شماره 

صفحات  -

تاریخ انتشار 2011