Case-Based Learning of Applicability Conditions for Stochastic Explanations
نویسندگان
چکیده
This paper studies the problem of explaining events in stochastic environments. We explore three ideas to address this problem: (1) Using the notion of Stochastic Explanation, which associates with any event a probability distribution over possible plausible explanations for the event. (2) Retaining as cases (event, stochastic explanation) pairs when unprecedented events occur. (3) Learning the probability distribution in the stochastic explanation as cases are reused. We claim that a system using stochastic explanations reacts faster to abrupt changes in the environment than a system using deterministic explanations. We demonstrate this claim in a CBR system, incorporating the 3 ideas above, while playing a real-time strategy game. We observe how the CBR system when using stochastic explanations reacts faster to abrupt changes in the environment than when using deterministic explanations.
منابع مشابه
Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کاملOn the insufficiency of existing momentum schemes for Stochastic Optimization
Momentum based stochastic gradient methods such as heavy ball (HB) and Nesterov’s accelerated gradient descent (NAG) method are widely used in practice for training deep networks and other supervised learning models, as they often provide significant improvements over stochastic gradient descent (SGD). Rigorously speaking, “fast gradient” methods have provable improvements over gradient descent...
متن کاملOn the Insufficiency of Existing Momentum Schemes for Stochastic Optimization
Momentum based stochastic gradient methods such as heavy ball (HB) and Nesterov’s accelerated gradient descent (NAG) method are widely used in practice for training deep networks and other supervised learning models, as they often provide significant improvements over stochastic gradient descent (SGD). In general, “fast gradient” methods have provable improvements over gradient descent only for...
متن کاملOn the Insufficiency of Existing Momentum Schemes for Stochastic Optimization
Momentum based stochastic gradient methods such as heavy ball (HB) and Nesterov’s accelerated gradient descent (NAG) method are widely used in practice for training deep networks and other supervised learning models, as they often provide significant improvements over stochastic gradient descent (SGD). In general, “fast gradient” methods have provable improvements over gradient descent only for...
متن کاملOn the Insufficiency of Existing Momentum Schemes for Stochastic Optimization
Momentum based stochastic gradient methods such as heavy ball (HB) and Nesterov’s accelerated gradient descent (NAG) method are widely used in practice for training deep networks and other supervised learning models, as they often provide significant improvements over stochastic gradient descent (SGD). Theoretically, these “fast gradient” methods have provable improvements over gradient descent...
متن کامل