Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress.
نویسندگان
چکیده
The global increase in transcription of cytoprotective genes induced in response to oxidative challenge has been termed the antioxidant response. Ferritin serves as the major iron-binding protein in nonhematopoietic tissues, limiting the catalytic availability of iron for participation in oxygen radical generation. Here we demonstrate that ferritin is a participant in the antioxidant response through a genetically defined electrophile response element (EpRE). The EpRE of ferritin H identified in this report exhibits sequence similarity to EpRE motifs found in antioxidant response genes such as those encoding NAD(P)H:quinone reductase, glutathione S-transferase, and heme oxygenase. However, the EpRE of ferritin H is unusual in structure, comprising two bidirectional motifs arranged in opposing directions on complementary DNA strands. In addition to EpRE-mediated transcriptional activation, we demonstrate that ferritin is subject to time-dependent translational control through regulation of iron-regulatory proteins (IRP). Although IRP-1 is initially activated to its RNA binding (ferritin-repressing) state by oxidants, it rapidly returns to its basal state. This permits the translation of newly synthesized ferritin transcripts and ultimately leads to increased levels of ferritin protein synthesis following oxidant exposure. Taken together, these results clarify the complex transcriptional and translational regulatory mechanisms that contribute to ferritin regulation in response to prooxidant stress and establish a role for ferritin in the antioxidant response.
منابع مشابه
Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation.
Iron plays a central role in the metabolism of all cells. This is evident by its major contribution to many diverse functions, such as DNA replication, bacterial pathogenicity, photosynthesis, oxidative stress control and cell proliferation. In mammalian systems, control of intracellular iron homeostasis is largely due to posttranscriptional regulation of binding by iron-regulatory RNA-binding ...
متن کاملI-33: Oxidative Stress Responses in EarlyPregnancy
Background: Survival of the conceptus is dependent on continuous progesterone signaling in the maternal decidua but how this is achieved under conditions of oxidative stress that characterize early pregnancy is unknown. Materials and Methods: Laboratory-based analysis of endometrial biopsies and primary endometrial cultures. Results: Using primary cultures, we show that modest levels of reactiv...
متن کاملRegulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice
Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...
متن کاملThe mechanism of iron homeostasis in the unicellular cyanobacterium synechocystis sp. PCC 6803 and its relationship to oxidative stress.
In this article, we demonstrate the connection between intracellular iron storage and oxidative stress response in cyanobacteria. Iron is essential for the survival of all organisms. However, the redox properties that make iron a valuable cofactor also lead to oxidative interactions, resulting in the formation of harmful radicals. Therefore, iron accumulation in cells should be tightly regulate...
متن کاملGenome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress.
Information on unique and coordinated regulation of transcription and translation in response to stress is central to the understanding of cellular homeostasis. Here we used ribosome profiling coupled with next-generation sequencing to examine the interplay between transcription and translation under conditions of hydrogen peroxide treatment in Saccharomyces cerevisiae. Hydrogen peroxide treatm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 20 16 شماره
صفحات -
تاریخ انتشار 2000