Se p 20 06 JACOBI – TSANKOV MANIFOLDS WHICH ARE NOT 2 - STEP NILPOTENT

نویسندگان

  • M. BROZOS - VÁZQUEZ
  • P. GILKEY
  • S. NIKČEVIĆ
چکیده

There is a 14-dimensional algebraic curvature tensor which is Jacobi–Tsankov (i.e. J (x)J (y) = J (y)J (x) for all x, y) but which is not 2-step Jacobi nilpotent (i.e. J (x)J (y) = 0 for some x, y); the minimal dimension where this is possible is 14. We determine the group of symmetries of this tensor and show that it is geometrically realizable by a wide variety of pseudo-Riemannian manifolds which are geodesically complete and have vanishing scalar invariants. Some of the manifolds in the family are symmetric spaces. Some are 0-curvature homogeneous but not locally homogeneous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-riemannian Jacobi–videv Manifolds

We exhibit several families of Jacobi–Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi–Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.

متن کامل

Three-step Harmonic Solvmanifolds

The Lichnerowicz conjecture asserted that every harmonic Riemannian manifold is locally isometric to a two-point homogeneous space. In 1992, E. Damek and F. Ricci produced a family of counter-examples to this conjecture, which arise as abelian extensions of two-step nilpotent groups of type-H. In this paper we consider a broader class of Riemannian manifolds: solvmanifolds of Iwasawa type with ...

متن کامل

Quadratic Presentations and Nilpotent Kähler Groups

It has been known for at least thirty years that certain nilpotent groups cannot be Kähler groups, i.e., fundamental groups of compact Kähler manifolds. The best known examples are lattices in the three-dimensional real or complex Heisenberg groups. It is also known that lattices in certain other standard nilpotent Lie groups, e.g., the full group of upper triangular matrices and the free k-ste...

متن کامل

, Osserman and Ivanov - Petrova Pseudo - Riemannian Manifolds

We exhibit pseudo Riemannian manifolds which are Szabó nilpotent of arbitrary order, or which are Osserman nilpotent of arbitrary order, or which are Ivanov-Petrova nilpotent of order 3.

متن کامل

Osserman manifolds of dimension 8

For a Riemannian manifold M n with the curvature tensor R, the Jacobi operator RX is defined by RX Y = R(X, Y)X. The manifold M n is called pointwise Osserman if, for every p ∈ M n , the eigenvalues of the Jacobi operator RX do not depend of a unit vector X ∈ TpM n , and is called globally Osserman if they do not depend of the point p either. R. Osserman conjectured that globally Osserman manif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006