Congruences for Bernoulli , Euler , and Stirling Numbers Paul

نویسنده

  • Paul Thomas Young
چکیده

The values at x=0 are called Bernoulli and Euler numbers of order w; when w=1, the polynomials or numbers are called ordinary. When x=0 or w=1, we often suppress that part of the notation; e.g., B (w) n denotes B n (0), En(x) denotes E (1) n (x), and Bn denotes B (1) n (0). These numbers have been extensively studied and many congruences for them are known. Among the most important results are the Kummer congruences for the ordinary Bernoulli numbers, which in their simplest form state that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences for degenerate number sequences

The degenerate Stirling numbers and degenerate Eulerian polynomials are intimately connected to the arithmetic of generalized factorials. In this article we show that these numbers and similar sequences may in fact be expressed as p-adic integrals of generalized factorials. As an application of this identiication we deduce systems of congruences which are analogues and generalizations of the Ku...

متن کامل

Congruences and Recurrences for Bernoulli Numbers of Higher Order

In particular, B^\0) = B^\ the Bernoulli number of order k, and BJp = Bn, the ordinary Bernoulli number. Note also that B^ = 0 for n > 0. The polynomials B^\z) and the numbers B^ were first defined and studied by Niels Norlund in the 1920s; later they were the subject of many papers by L. Carlitz and others. For the past twenty-five years not much has been done with them, although recently the ...

متن کامل

Arithmetic Identities Involving Genocchi and Stirling Numbers

Guodong Liu Department of Mathematics, Huizhou University, Huizhou, Guangdong 516015, China Correspondence should be addressed to Guodong Liu, [email protected] Received 18 June 2009; Accepted 12 August 2009 Recommended by Leonid Berezansky An explicit formula, the generalized Genocchi numbers, was established and some identities and congruences involving the Genocchi numbers, the Bernoul...

متن کامل

On Lucas-bernoulli Numbers

In this article we investigate the Bernoulli numbers B̂n associated to the formal group laws whose canonical invariant differentials generate the Lucas sequences {Un} and {Vn}. We give explicit expressions for these numbers and prove analogues of Kummer congruences for them.

متن کامل

Algorithms for Bernoulli and Allied Polynomials

We investigate some algorithms that produce Bernoulli, Euler and Genocchi polynomials. We also give closed formulas for Bernoulli, Euler and Genocchi polynomials in terms of weighted Stirling numbers of the second kind, which are extensions of known formulas for Bernoulli, Euler and Genocchi numbers involving Stirling numbers of the second kind.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999