Ecosystem Evapotranspiration : Challenges in Measurements , Estimates , and Modeling
نویسندگان
چکیده
Evapotranspiration (ET) processes at the leaf to landscape scales in multiple land uses have important controls and feedbacks for local, regional, and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and crop water use are critical for adapting more effective management strategies to cope with increasing demand for freshwater resources under global climate change. This article introduces an ASABE Special Collection of 12 articles on ET monitoring and modeling research for multiple land uses and scales. The collection focuses on recent advances in four critical topical areas: (1) reference ET (REF-ET) method development and applications, including crop management and irrigation scheduling, limitations due to sensor inaccuracies and variability, and sensitivity to climatic drivers (three articles); (2) ET process and pathway characterization, including canopy interception, transpiration, and soil evaporation measured using various state-of-the-art techniques on crop lands and plantation forests, and effects of soil moisture on grassland water balance (three articles); (3) ET simulation within hydrological models (SWAT, MIKE SHE, RZWQM, RZ-SHAW, RegCM-BATS, DRAINMODFOREST, and Thornthwaite water balance) as well as related processes, such as crop growth and ET/PET ratios, for grass, crop, and forest lands (four articles); and (4) geospatial technology applications, such as using remote sensing to estimate ET and its components (soil evaporation and transpiration) for various land uses (two articles). Study sites represent a range of spatial scales and ecohydrological settings, including grasslands in Inner Mongolia dry lands in northern China, semiarid high plains in Texas, corn production regions from Iowa to Colorado, forest plantations on the humid Atlantic Coastal Plain, developed coastal areas on the island of Taiwan, and the continental U.S. Results from these studies will help guide current development and assessment of REF-ET, ET, and monitoring and modeling of their components in multiple scales and ecosystems. The studies also establish a platform for addressing potential inaccuracies in data from weather sensors and algorithms used in remote sensing products for estimating ET and its parameters, including uncertainties in REF-ET estimates, for tall forest vegetation in particular. Furthermore, the studies offer insights into the interactions between climatic variability and change and vegetation through the ET process.
منابع مشابه
ارزیابی مدل SIMDualKC با استفاده از دادههای لیسیمتری جهت برآورد تبخیر- تعرق روزانه گیاه گشنیز (Coriandrum sativum L.)
The SIMDualKc model is an irrigation scheduling simulation model that uses dual crop coefficient method for estimating ETc by computing two separate soil water balances in daily time-step, one for the soil evaporation layer from which Ke is computed, and the other one for the entire root zone to compute the actual Kcb adjusted to the soil moisture conditions. In this study, lysimetric measureme...
متن کاملEvaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution Evapotranspiration Estimates for Amazonian Forests
While forest evapotranspiration (ET) dynamics in the Amazon have been studied both as point estimates using flux towers, as well as spatially coarse surfaces using satellite data, higher resolution (e.g., 30 m resolution) ET estimates are necessary to address finer spatial variability associated with forest biophysical characteristics and their changes by natural and human impacts. The objectiv...
متن کاملModeling and Partitioning of Regional Evapotranspiration Using a Satellite-Driven Water-Carbon Coupling Model
The modeling and partitioning of regional evapotranspiration (ET) are key issues in global hydrological and ecological research. We incorporated a stomatal conductance model and a light-use efficiency-based gross primary productivity (GPP) model into the Shuttleworth–Wallace model to develop a simplified carbon-water coupling model, SWH, for estimating ET using meteorological and remote sensing...
متن کاملEvapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in Northern Wisconsin, USA
Direct measurement of ecosystem evapotranspiration by the eddy covariance method and simulation modeling were employed to quantify the growing season (May–October) evapotranspiration (ET) of eight forest ecosystems representing a management gradient in dominant forest types and age classes in the Upper Great Lakes Region from 2002 to 2003. We measured net exchangeof water vapor fluxes in a 63-y...
متن کاملBoreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements
Nine ecosystem process models were used to predict CO2 and water vapor exchanges by a 150-year-old black spruce forest in central Canada during 1994–1996 to evaluate and improve the models. Three models had hourly time steps, five had daily time steps, and one had monthly time steps. Model input included site ecosystem characteristics and meteorology. Model predictions were compared to eddy cov...
متن کامل