Partial Differential Equations Γ -convergence and Sobolev norms
نویسنده
چکیده
We study a Γ -convergence problem related to a new characterization of Sobolev spaces W1,p(RN) (p > 1) established in H.-M. Nguyen [H.-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689–720] and J. Bourgain and H.-M. Nguyen [J. Bourgain, H.-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 75–80]. We can also handle the case p = 1 which was out of reach previously. To cite this article: H.-M. Nguyen, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Résumé Γ -convergence et normes de Sobolev. On étudie un problème de Γ -convergence qui apparaît naturellement en liaison avec les travaux de H.-M. Nguyen [H.-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689–720], et J. Bourgain et H.-M. Nguyen [J. Bourgain, H.-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 343 (2006), 75–80] concernant des nouvelles caractérisations des espaces de Sobolev W1,p(RN) (p > 1). On peut aussi traiter le cas p = 1 qui était inaccessible précédemment. Pour citer cet article : H.-M. Nguyen, C. R. Acad. Sci. Paris, Ser. I 345 (2007). © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Version française abrégée Soient p 1 et δ > 0. Posons Iδ(g)= ∫ ∫ RN×RN |g(x)−g(y)|>δ δ |x − y|N+p dx dy, ∀g ∈ L (R). Ci-après | | désigne la norme euclidienne de R . Récemment la caractérisation suivante des espaces de Sobolev a été établie dans [10, Théorème 2] et [3, Théorème 1] : Théorème 1. Soient N 1, 1 <p <+∞, et g ∈ L(R). Alors g ∈W 1,p(RN) si et seulement si lim inf δ→0+ Iδ(g) <+∞. E-mail address: [email protected]. 1631-073X/$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2007.11.005 680 H.-M. Nguyen / C. R. Acad. Sci. Paris, Ser. I 345 (2007) 679–684
منابع مشابه
On the convergence of the homotopy analysis method to solve the system of partial differential equations
One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملResearch Summary
1. Overview 2 2. Electromagnetic waves 3 2.1. Approximate cloaking via change of variables 3 2.1.1. Cloaking for the Helmholtz equation 3 2.1.2. Full range estimates for the degree of invisibility 4 2.1.3. Perfect cloaking for the Helmholtz equation 4 2.2. Electrical impedance tomography 5 2.3. Generalized impedance boundary conditions 5 2.3.1. The Helmholtz equation 6 2.3.1. The time harmonic ...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کامل