Domain Decomposition Solvers for the Fluid-Structure Interaction Problems with Anisotropic Elasticity Models Powered by TCPDF (www.tcpdf.org) DOMAIN DECOMPOSITION SOLVERS FOR THE FLUID-STRUCTURE INTERACTION PROBLEMS WITH ANISOTROPIC ELASTICITY MODELS

نویسندگان

  • H. Yang
  • HUIDONG YANG
چکیده

In this work, a two-layer coupled fluid-structure-structure interaction model is considered, which incorporates an anisotropic structure model into the fluid-structure interaction problems. We propose two domain decomposition solvers for such a class of coupled problems: a Robin-Robin preconditioned GMRES solver combined with an inner Dirichlet-Neumann iterative solver, and a Robin-Robin preconditioned GMRES solver combined with an inner monolithic algebraic multigrid solver capable of handling an anisotropic compressible and nearly incompressible sub-problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain Decomposition Solvers for the Fluid-Structure Interaction Problems with Anisotropic Elasticity Models

In this work, a two-layer coupled fluid-structure-structure interaction model is considered, which incorporates an anisotropic structure model into the fluid-structure interaction problems. We propose two domain decomposition solvers for such a class of coupled problems: a Robin-Robin preconditioned GMRES solver combined with an inner Dirichlet-Neumann iterative solver, and a Robin-Robin precon...

متن کامل

A Class of Fluid-structure Interaction Solvers with a Nearly Incompressible Elasticity Model

In this paper, we present some numerical studies on two partitioned fluid-structure interaction solvers: a preconditioned GMRES solver and a Newton based solver, for the fluid-structure interaction problems employing a nearly incompressible elasticity model in a classical mixed displacementpressure formulation. Both are highly relying on robust and efficient solvers for the fluid and structure ...

متن کامل

Numerical Simulation of Fluid-Structure Interaction Problems with Hyperelastic Models I: A Partitioned Approach Powered by TCPDF (www.tcpdf.org) NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH HYPERELASTIC MODELS I: A PARTITIONED APPROACH

In this work, we consider fluid-structure interaction simulation with nonlinear hyperelastic models in the solid part. We use a partitioned approach to deal with the coupled nonlinear fluid-structure interaction problems. We focus on handling the nonlinearity of the fluid and structure sub-problems, the nearincompressibility of materials, the stabilization of employed finite element discretizat...

متن کامل

Presenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems

A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...

متن کامل

Numerical Simulation of Fluid-Structure Interaction Problems with Hyperelastic Models: A Monolithic Approach Powered by TCPDF (www.tcpdf.org) NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH HYPERELASTIC MODELS: A MONOLITHIC APPROACH

In this paper, we consider a monolithic approach to handle coupled fluid-structure interaction problems with different hyperelastic models in an all-at-once manner. We apply Newtons method in the outer iteration dealing with nonlinearities of the coupled system. We discuss preconditioned Krylov sub-space, algebraic multigrid and algebraic multilevel methods for solving the linearized algebraic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014