Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras
نویسنده
چکیده
The notion of Poisson manifold with compatible pseudo-metric was introduced by the author in [1]. In this paper, we introduce a new class of Lie algebras which we call a pseudo-Riemannian Lie algebras. The two notions are strongly related: we prove that a linear Poisson structure on the dual of a Lie algebra has a compatible pseudo-metric if and only if the Lie algebra is a pseudo-Riemannian Lie algebra, and that the Lie algebra obtained by linearizing at a point a Poisson manifold with compatible pseudo-metric is a pseudo-Riemannian Lie algebra. Furthermore, we give some properties of the symplectic leaves of such manifolds, and we prove that every Poisson manifold with compatible metric ( every Riemann-Lie algebras) is unimodular. As a final, we classify all pseudo-Riemannian Lie algebras of dimension 2 and 3.
منابع مشابه
Computing Bi-Invariant Pseudo-Metrics on Lie Groups for Consistent Statistics
In computational anatomy, organ’s shapes are often modeled as deformations of a reference shape, i.e., as elements of a Lie group. To analyze the variability of the human anatomy in this framework, we need to perform statistics on Lie groups. A Lie group is a manifold with a consistent group structure. Statistics on Riemannian manifolds have been well studied, but to use the statistical Riemann...
متن کاملStatistics on Lie groups : a need to go beyond the pseudo-Riemannian framework
Lie groups appear in many fields fromMedical Imaging to Robotics. In Medical Imaging and particularly in Computational Anatomy, an organ’s shape is often modeled as the deformation of a reference shape, in other words: as an element of a Lie group. In this framework, if one wants to model the variability of the human anatomy, e.g. in order to help diagnosis of diseases, one needs to perform sta...
متن کاملOn the Riemann-Lie Algebras and Riemann-Poisson Lie Groups
A Riemann-Lie algebra is a Lie algebra G such that its dual G∗ carries a Riemannian metric compatible (in the sense introduced by the author in C. R. Acad. Sci. Paris, t. 333, Série I, (2001) 763–768) with the canonical linear Poisson structure of G∗ . The notion of Riemann-Lie algebra has its origins in the study, by the author, of Riemann-Poisson manifolds (see Differential Geometry and its A...
متن کاملGeodesics and Deformed Pseudo–riemannian Manifolds with Symmetry
There is a general method, applicable in many situations, whereby a pseudo–Riemannian metric, invariant under the action of some Lie group, can be deformed to obtain a new metric whose geodesics can be expressed in terms of the geodesics of the old metric and the action of the Lie group. This method applied to Euclidean space and the unit sphere produces new examples of complete Riemannian metr...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کامل