Sharp and Rigid Isoperimetric Inequalities in Metric-measure Spaces with Lower Ricci Curvature Bounds

نویسندگان

  • FABIO CAVALLETTI
  • ANDREA MONDINO
چکیده

We prove that if (X, d,m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K > 0 and dimension bounded above by N ∈ [1,∞), then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts proved in the smooth setting by E. Milman for any K ∈ R, N ≥ 1 and upper diameter bounds) hold, i.e. the isoperimetric profile function of (X, d,m) is bounded from below by the isoperimetric profile of the model space. Moreover, if equality is attained for some volume v ∈ (0, 1) and K is strictly positive, then the space must be a spherical suspension and in this case we completely classify the isoperimentric regions. To our knowledge this is the first result about isoperimetric comparison for non smooth metric measure spaces satisfying Ricci curvature lower bounds. Examples of spaces fitting our assumptions include measured Gromov-Hausdorff limits of Riemannian manifolds satisfying Ricci curvature lower bounds and Alexandrov spaces with curvature bounded from below; the result seems new even in these celebrated classes of spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Geometric and Functional Inequalities in Metric Measure Spaces with Lower Ricci Curvature Bounds

Abstract. For metric measure spaces verifying the reduced curvature-dimension condition CD∗(K,N) we prove a series of sharp functional inequalities under the additional assumption of essentially nonbranching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy...

متن کامل

Curvature Bounds by Isoperimetric Comparison for Normalized Ricci Flow on the Two-sphere

We prove a comparison theorem for the isoperimetric profiles of solutions of the normalized Ricci flow on the two-sphere: If the isoperimetric profile of the initial metric is greater than that of some positively curved axisymmetric metric, then the inequality remains true for the isoperimetric profiles of the evolved metrics. We apply this using the Rosenau solution as the model metric to dedu...

متن کامل

Ricci curvature , entropy and optimal transport – Summer School in Grenoble 2009 – ‘ Optimal Transportation : Theory and Applications

These notes are the planned contents of my lectures. Some parts could be only briefly explained or skipped due to the lack of time or possible overlap with other lectures. The aim of these lectures is to review the recent development on the relation between optimal transport theory and Riemannian geometry. Ricci curvature is the key ingredient. Optimal transport theory provides a good character...

متن کامل

Structure Theory of Metric-measure Spaces with Lower Ricci Curvature Bounds I

We prove that a metric measure space (X, d,m) satisfying finite dimensional lower Ricci curvature bounds and whose Sobolev space W1,2 is Hilbert is rectifiable. That is, a RCD∗(K,N)-space is rectifiable, and in particular for m-a.e. point the tangent cone is unique and euclidean of dimension at most N. The proof is based on a maximal function argument combined with an original Almost Splitting ...

متن کامل

CDloc(K,N) IMPLIES MCP(K,N)

We prove that for non-branching metric measure spaces the local curvature condition CDloc(K, N) implies the global version of MCP(K, N). The curvature condition CD(K, N) introduced by the second author and also studied by Lott & Villani is the generalization to metric measure space of lower bounds on Ricci curvature together with upper bounds on the dimension. This paper is the following step o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015