Packing, tiling, and covering with tetrahedra.

نویسندگان

  • J H Conway
  • S Torquato
چکیده

It is well known that three-dimensional Euclidean space cannot be tiled by regular tetrahedra. But how well can we do? In this work, we give several constructions that may answer the various senses of this question. In so doing, we provide some solutions to packing, tiling, and covering problems of tetrahedra. Our results suggest that the regular tetrahedron may not be able to pack as densely as the sphere, which would contradict a conjecture of Ulam. The regular tetrahedron might even be the convex body having the smallest possible packing density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New family of tilings of three-dimensional Euclidean space by tetrahedra and octahedra.

It is well known that two regular tetrahedra can be combined with a single regular octahedron to tile (complete fill) three-dimensional Euclidean space . This structure was called the "octet truss" by Buckminster Fuller. It was believed that such a tiling, which is the Delaunay tessellation of the face-centered cubic (fcc) lattice, and its closely related stacking variants, are the only tessell...

متن کامل

Dense Crystalline Dimer Packings of Regular Tetrahedra

We present the densest known packing of regular tetrahedra with density φ = 4000 4671 = 0.856347 . . . . Like the recently discovered packings of Kallus et al. and Torquato–Jiao, our packing is crystalline with a unit cell of four tetrahedra forming two triangular dipyramids (dimer clusters). We show that our packing has maximal density within a three-parameter family of dimer packings. Numeric...

متن کامل

Degenerate quasicrystal of hard triangular bipyramids.

We report a degenerate quasicrystal in Monte Carlo simulations of hard triangular bipyramids each composed of two regular tetrahedra sharing a single face. The dodecagonal quasicrystal is similar to that recently reported for hard tetrahedra [Haji-Akbari et al., Nature (London) 462, 773 (2009)] but degenerate in the pairing of tetrahedra, and self-assembles at packing fractions above 54%. This ...

متن کامل

Packing and Covering by Translates of Certain Nonconvex Bodies

We develop techniques for determining the packing and covering constants for star bodies composed of cubes. In the theory of convex sets problems of tiling, packing, and covering by translates of a given set have a long history, with the main focus on the packing and covering by spheres. Only in a few cases is the densest packing or sparsest covering known, even in the case of the sphere, excep...

متن کامل

Phase diagram of hard tetrahedra.

Advancements in the synthesis of faceted nanoparticles and colloids have spurred interest in the phase behavior of polyhedral shapes. Regular tetrahedra have attracted particular attention because they prefer local symmetries that are incompatible with periodicity. Two dense phases of regular tetrahedra have been reported recently. The densest known tetrahedron packing is achieved in a crystal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 28  شماره 

صفحات  -

تاریخ انتشار 2006