An analogue to Dixon's theorem for automaton groups
نویسنده
چکیده
Dixon’s famous theorem states that the group generated by two random permutations of a finite set is generically either the whole symmetric group or the alternating group. In the context of random generation of finite groups this means that it is hopeless to wish for a uniform distribution – or even a non-trivial one – by drawing random permutations and looking at the generated group. Mealy automata are a powerful tool to generate groups, including all finite groups and many interesting infinite ones, whence the idea of generating random finite groups by drawing random Mealy automata. In this paper we show that, for a special class of Mealy automata that generate only finite groups, the distribution is far from being uniform since the obtained groups are generically a semi-direct product between a direct product of alternating groups and a group generated by a tuple of transpositions.
منابع مشابه
Myhill-Nerode Fuzzy Congruences Corresponding to a General Fuzzy Automata
Myhill-Nerode Theorem is regarded as a basic theorem in the theories of languages and automata and is used to prove the equivalence between automata and their languages. The significance of this theorem has stimulated researchers to develop that on different automata thus leading to optimizing computational models. In this article, we aim at developing the concept of congruence in general fuzzy...
متن کاملAlternating Regular Tree Grammars in the Framework of Lattice-Valued Logic
In this paper, two different ways of introducing alternation for lattice-valued (referred to as {L}valued) regular tree grammars and {L}valued top-down tree automata are compared. One is the way which defines the alternating regular tree grammar, i.e., alternation is governed by the non-terminals of the grammar and the other is the way which combines state with alternation. The first way is ta...
متن کاملMINIMIZATION OF DETERMINISTIC FINITE AUTOMATA WITH VAGUE (FINAL) STATES AND INTUITIONISTIC FUZZY (FINAL) STATES
In this paper, relations among the membership values of gener- alized fuzzy languages such as intuitionistic fuzzy language, interval-valued fuzzy language and vague language are studied. It will aid in studying the properties of one language when the properties of another are known. Further, existence of a minimized nite automaton with vague ( final) states for any vague regular language recog...
متن کاملExamples of non-quasicommutative semigroups decomposed into unions of groups
Decomposability of an algebraic structure into the union of its sub-structures goes back to G. Scorza's Theorem of 1926 for groups. An analogue of this theorem for rings has been recently studied by A. Lucchini in 2012. On the study of this problem for non-group semigroups, the first attempt is due to Clifford's work of 1961 for the regular semigroups. Since then, N.P. Mukherjee in 1972 studied...
متن کاملOn Groups and Counter Automata
We study finitely generated groups whose word problems are accepted by counter automata. We show that a group has word problem accepted by a blind n-counter automaton in the sense of Greibach if and only if it is virtually free abelian of rank n; this result, which answers a question of Gilman, is in a very precise sense an abelian analogue of the Muller-Schupp theorem. More generally, if G is ...
متن کامل