Neural Network Based Feedback Scheduling of Multitasking Control Systems

نویسندگان

  • Feng Xia
  • Youxian Sun
چکیده

To cope with resource constraints in multitasking control systems, feedback scheduling is emerging as an important technique for integrating control and scheduling. The ability of neural networks (NNs) as good and robust nonlinear function approximators, reducing the computation time as compared against algorithmic solutions, suggests applying them to the feedback scheduling problem. A novel, simple and intelligent feedback scheduler is presented using a feedforward NN. The algorithmic optimizer is utilized as a teacher to generate data samples for NN training. The role of the NN based feedback scheduler is to provide a good approximation to the optimal solution and online adjust the sampling period of each control task so that the overall system performance is maximized in the face of workload variations. The performance of the NN approach is evaluated through co-simulations of the scheduler, controllers and process dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Feedback Scheduling of Real-Time Control Tasks

Many embedded real-time control systems suffer from resource constraints and dynamic workload variations. Although optimal feedback scheduling schemes are in principle capable of maximizing the overall control performance of multitasking control systems, most of them induce excessively large computational overheads associated with the mathematical optimization routines involved and hence are no...

متن کامل

adaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network

This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network,  for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed  by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...

متن کامل

Markovian Delay Prediction-Based Control of Networked Systems

A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...

متن کامل

Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...

متن کامل

Real-Time Output Feedback Neurolinearization

 An adaptive input-output linearization method for general nonlinear systems is developed without using states of the system. Another key feature of this structure is the fact that, it does not need model of the system. In this scheme, neurolinearizer has few weights, so it is practical in adaptive situations.  Online training of neuroline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005