System identification using hierarchical fuzzy neural networks with stable learning algorithm

نویسندگان

  • Wen Yu
  • Marco A. Moreno-Armendáriz
  • Floriberto Ortiz-Rodríguez
چکیده

Hierarchical fuzzy neural networks can use less rules to model nonlinear system with high accuracy. But the normal training method for hierarchical fuzzy neural networks is very complex. In this paper we modify the backpropagation approach and employ a time-varying learning nte that is determined from input-output data and model stnicture. Stable learning algorithms for the premise and the consequence parts of the fuzzy niles are proposed. The calculation of the learning rate does not need any prior information such as estimation of the modeling error bounds. The new algorithms are very simple, we can train each sub-block of the hierarchical fuzzy neural networks independently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

System identification using hierarchical fuzzy neural networks with stable learning algorithms

Hierarchical f u q neural networks can use less rules to model nonlinear system with high accuracy. But the structure is very complex, the normal training for hierarchical fuzzy neural networks is difficult to realize. In this paper we use backpropagation-like approach to train the membership functions. The new learning schemes employ a time-varying learning rate that is determined from input-o...

متن کامل

Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems

‎Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated‎. ‎In this paper‎, ‎we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties‎, ‎and we prove the global ...

متن کامل

System Identification Using Hierarchical Fuzzy CMAC Neural Networks

The conventional fuzzy CMAC can be viewed as a basis function network with supervised learning, and performs well in terms of its fast learning speed and local generalization capability for approximating nonlinear functions. However,it requires an enormous memory and the dimension increase exponentially with the input number. Hierarchical fuzzy CMAC (HFCMAC) can use less memory to model nonline...

متن کامل

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...

متن کامل

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2007