Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.

نویسندگان

  • Benjamin Gallinet
  • Olivier J F Martin
چکیده

Plasmonic modes with long radiative lifetimes, subradiant modes, combine strong confinement of the electromagnetic energy at the nanoscale with a steep spectral dispersion, which makes them promising for biochemical sensors or immunoassays. Subradiant modes have three decay channels: Ohmic losses, their extrinsic coupling to radiation, and possibly their intrinsic dipole moment. In this work, the performance of subradiant modes for refractive index sensing is studied with a general analytical and numerical approach. We introduce a model for the impact that has different decay channels of subradiant modes on the spectral resolution and contrast. It is shown analytically and verified numerically that there exists an optimal value of the mode coupling for which the spectral dispersion of the resonance line shape is maximal. The intrinsic width of subradiant modes determines the value of the dispersion maximum and depends on the penetration of the electric field in the metallic nanostructure. A figure of merit, given by the ratio of the sensitivity to the intrinsic width, which are both intrinsic properties of subradiant modes, is introduced. This figure of merit can be directly calculated from the line shape in the far-field optical spectrum and accounts for the fact that both the spectral resolution and contrast determine the limit of detection. An expression for the intrinsic width of a plasmonic mode is derived and calculated from the line shape parameters and using perturbation theory. The method of analysis introduced in this work is illustrated for dolmen and heptamer nanostructures. Fano-resonant systems have the potential to act as very efficient refractive index sensing platforms compared to Lorentz-resonant systems, due to control of their radiative losses. This study paves the way toward sensitive nanoscale biochemical sensors and immunoassays with a low limit of detection and, in general, any nano-optical device where Ohmic losses limit the performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach.

Sensing using surface plasmon resonances is one of the most promising practical applications of plasmonic nanostructures and Fano resonances allow achieving a lower detection limit thanks to their narrow spectral features. However, a narrow spectral width of the subradiant mode in a plasmonic system, as observed in the weak coupling regime, is in general associated with a low modulation of the ...

متن کامل

Detection of Formaldehyde in Water: A Shape-Effect on the Plasmonic Sensing Properties of the Gold Nanoparticles

The effect of morphology on the plasmonic sensing of the presence of formaldehyde in water by gold nanostructures has been investigated. The gold nanostructures with two different morphologies, namely spherical and rod, were prepared using a seed-mediated method. In typical results, it was found that the plasmonic properties of gold nanostructures were very sensitive to the presence of formalde...

متن کامل

Sensitive structures: refractive indices in nanotechnology.

Anna Demming Publishing Editor, IOP Publishing, Bristol, UK Refractive index effects using nanoscale systems are frequently applied in new imaging, sensing and even visibility cloaking technology. In this issue, researchers in Japan use simulations and experiments to describe the confinement of optical vortices in nanoscale fin structures and the sensitivity of these systems to the refractive i...

متن کامل

Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator

A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The...

متن کامل

Plasmonic Nanostructures for Nano-Scale Bio-Sensing

The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 7 8  شماره 

صفحات  -

تاریخ انتشار 2013