Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice
نویسندگان
چکیده
Substantial progress has been made in the therapeutic reduction of vertebral fracture risk in patients with osteoporosis, but non-vertebral fracture risk has been improved only marginally. Human genetic studies demonstrate that the WNT16 locus is a major determinant of cortical bone thickness and non-vertebral fracture risk and mouse models with life-long Wnt16 inactivation revealed that WNT16 is a key regulator of cortical thickness. These studies, however, could not exclude that the effect of Wnt16 inactivation on cortical thickness might be caused by early developmental and/or growth effects. To determine the effect of WNT16 specifically on adult cortical bone homeostasis, Wnt16 was conditionally ablated in young adult and old mice through tamoxifen-inducible Cre-mediated recombination using CAG-Cre-ER; Wnt16flox/flox (Cre-Wnt16flox/flox) mice. First, 10-week-old Cre-Wnt16flox/flox and Wnt16flox/flox littermate control mice were treated with tamoxifen. Four weeks later, Wnt16 mRNA levels in cortical bone were reduced and cortical thickness in femur was decreased in Cre-Wnt16flox/flox mice compared to Wnt16flox/flox mice. Then, inactivation of Wnt16 in 47-week-old mice (evaluated four weeks later) resulted in a reduction of Wnt16 mRNA levels, cortical thickness and cortical bone strength with no effect on trabecular bone volume fraction. Mechanistic studies demonstrated that the reduced cortical bone thickness was caused by a combination of increased bone resorption and reduced periosteal bone formation. In conclusion, WNT16 is a crucial regulator of cortical bone thickness in young adult and old mice. We propose that new treatment strategies targeting the adult regulation of WNT16 might be useful to reduce fracture risk at cortical bone sites.
منابع مشابه
A new WNT on the bone: WNT16, cortical bone thickness, porosity and fractures.
The last decade has provided abundant data implicating the WNT pathway in bone development and in the regulation of skeletal homeostasis. Rare human mutations together with gain- and loss-of-function approaches in mice have clearly demonstrated that disrupted regulation of this pathway leads to altered bone mass. In addition to these rare human and mice mutations, large population-based genome-...
متن کاملWnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone
Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 exp...
متن کاملThe bone-sparing effects of estrogen and WNT16 are independent of each other.
Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16(-/-) mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females is WNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modifi...
متن کاملWNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in...
متن کاملINTRODUCING Wnt 16 ATTENUATES THE SEVERITY OF OSTEOARTHRITIS
Introduction: Osteoarthritis (OA) is the most common form of arthritis characterized by the degeneration of articular cartilage, intra-articular inflammation, and osteophytes formation. Notably, OA chondrocytes undergo cellular changes that recall hypertrophy and ossification process of the growth plate chondrocytes during endochondral ossification. This “replay” at incorrect time and incorrect...
متن کامل