Modifying fish gelatin electrospun membranes for biomedical applications: cross- linking and swelling behavior

نویسندگان

  • J. Padrão
  • J. P. Silva
  • L. R. Rodrigues
  • F. Dourado
  • S. Lanceros-Méndez
  • V. Sencadas
چکیده

Development of suitable membranes is a fundamental requisite for tissue and biomedical engineering applications. This work presents fish gelatin random and aligned electrospun membranes cross-linked with glutaraldehyde (GA). It was observed that the fiber average diameter and the morphology is not influenced by the GA exposure time and presents fibers with an average diameter around 250 nm. Moreover, when the gelatin mats are immersed in a phosphate buffered saline solution (PBS), they can retain as much as 12 times its initial weight of solution almost instantaneously, but the material microstructure of the fiber mats changes from the characteristic fibrous to an almost spherical porous structure. Cross-linked gelatin electrospun fiber mats and films showed a water vapor permeability of 1.37 ± 0.02 and 0.13 ± 0.10 (g.mm)/(m.h.kPa), respectively. Finally, the processing technique and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Preliminary cell culture results showed good cell adhesion and proliferation in the cross-linked random and aligned gelatin fiber mats. http://www.tandfonline.com/doi/pdf/10.1080/1539445X.2013.873466

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal and hydrolytic degradation of electrospun fish gelatin membranes

The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 oC. After 15 days under these conditions, a weight loss of 68 % was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal ...

متن کامل

Synthesis and Characterization of Biodegradable Hemostat Gelatin Sponge for Surgery Application

     Production and characterization of soft cross-linked gelatin sponge by using glutaraldehyde for blood hemostasis application, is the goal of this study. Biodegradable hydrogels were prepared through crosslinking of gelatin with glutaraldehyde followed by freeze drying. The effects of gelatin concentration, amount of crosslink agent and freeze drying temperature on mechanical properties and...

متن کامل

Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

Objective(s): To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO) nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.  Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nano...

متن کامل

Microplasma-assisted hydrogel fabrication: A novel method for gelatin-graphene oxide nano composite hydrogel synthesis for biomedical application

Toxicity issues and biocompatibility concerns with traditional classical chemical cross-linking processes prevent them from being universal approaches for hydrogel fabrication for tissue engineering. Physical cross-linking methods are non-toxic and widely used to obtain cross-linked polymers in a tunable manner. Therefore, in the current study, argon micro-plasma was introduced as a neutral ene...

متن کامل

Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds.

The aim of this study is to investigate cross-linked gelatin-chitosan nanofibers produced by means of electrospinning. Gelatin and chitosan nanofibers were electrospun and then cross-linked by glutaraldehyde (GTA) vapor at room temperature. Scanning electron microscopy (SEM) images showed that the cross-linked mats could keep their nanofibrous structure after being soaked in deionized water at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014