Instability of disease-free equilibrium in a model of malaria with immune delay.

نویسندگان

  • Konstantin B Blyuss
  • Yuliya N Kyrychko
چکیده

A recent paper Ncube (2013) [11] considered the disease-free equilibrium in a mathematical model for intra-host dynamics of Plasmodium falciparum malaria with discrete immune time delay. The author showed that depending on system parameters, the disease-free steady state can be absolutely stable (i.e. asymptotically stable for arbitrary positive values of the time delay), or it can be asymptotically stable for sufficiently small values of the time delay and then undergo Hopf bifurcation once the time delay exceeds certain critical value. In this paper we show by direct calculation that the conclusions regarding stability and Hopf bifurcation of the disease-free equilibrium are incorrect, and, in fact, the disease-free equilibrium of the model is always unstable. Furthermore, we provide a general argument why the disease-free steady state of the model can never undergo Hopf bifurcation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The analysis of a disease-free equilibrium of Hepatitis B model

In this paper we study the dynamics of Hepatitis B virus (HBV) infection under administration of a vaccine and treatment, where the disease is transmitted directly from the parents to the offspring  and also through contact with infective individuals. Stability of the disease-free steady state is investigated. The basic reproductive rate, $R_0$, is derived. The results show that the dynamics of...

متن کامل

A THREE DIMENSIONAL HTLV-1 MODEL WITH INTRACELLULAR AND IMMUNE ACTIVATION DELAYS

In this paper, a three dimensional mathematical model for HTLV-1infection with intracellular delay and immune activation delay is investigated.By applying the frequency domain approach, we show that time delays candestabilize the HAM/TSP equilibrium, leading to Hopf bifurcations and sta-ble or unstable periodic oscillations. At the end, numerical simulations areillustrated.

متن کامل

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

Stability Analysis of a Fractional Order Model of HIV virus and AIDS Infection in the Community

In  this  paper a  non-linear  model  with  fractional  order  is  presented  for  analyzing  and  controlling the  spread  of  HIV virus.  Both  the  disease-free  equilibrium and the endemic equilibrium are  found  and  their  stability is  discussed. The basic reproduction number , which is a function of the constant parameters in the model, plays an essential  role in the stability of  the ...

متن کامل

A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity

In the paper, we propose a model that tracks the dynamics of malaria in the human host and mosquito vector. Our model incorporates some infected humans that recover from infection and immune humans after loss of immunity to the disease to join the susceptible class again. All the new borne are susceptible to the infection and there is no vertical transmission. The stability of the system is ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 248  شماره 

صفحات  -

تاریخ انتشار 2014