Microchannel-patterned and heparin micro-contact-printed biodegradable composite membranes for tissue-engineering applications.
نویسندگان
چکیده
Microchannel-patterned starch-poly(capro-lactone)/hydydroxyapatite (SPCL-HA) and starch-poly(lactic acid) (SPLA) composite membranes were produced for use as a laminated tissue-engineering scaffold that incorporates both physical and biochemical patterns. For this purpose, SPCL (30% starch) blended with inorganic hydroxyl apatite (50%) and SPLA (50% starch) membranes were made with compressive moulding. Consequently, the microchannel structures (width 102 µm, 174 µm intervals) were developed on the composite membranes by means of micro-patterned metal mould(s) and hydraulic pressing. An elastomer poly(dimetylsiloxane) stamp was used to transfer heparin as a biochemical cue over the microchannel surfaces by micro-contact printing (µCP). Toluidine blue staining of developed capillaries and heparin µCP-coated membranes showed that heparin was transferred predominantly over the microchannel surfaces. Fibroblast cell culture over the microchannel-formed and heparin µCP-modified SPCL-HA and SPLA membranes showed distinct growth patterns. In contrast to the uniform cell layer formed on unmodified microchannels, the cells were bridging across the grooves of heparin-printed microchannels. At extended culture periods, the heparin-printed microchannels were covered with a layer of fibroblast cells without cellular ingrowths inside. This study indicated that the topographical pattern could induce an organization of fibroblasts only with the biochemical cue and the cells' functions can be controlled spatially over the microchannels by using both cues.
منابع مشابه
The electroactivity and stability of conductive PPy/HE/PLLA membranes
Linli Zhang, Shiyun Meng, Ze Zhang Faculty of Medicine, Laval University; Saint-François d’Assise Hospital Research Center, CHUQ, Quebec, QC, Canada. Statement of Purpose: Polypyrrole (PPy) is an important intrinsically conducting polymer studied for tissue engineering and bioelectrical applications. Its composites with biodegradable polylactide (PLLA) can be used as substrate for electrically ...
متن کاملPreparation of Biopolymeric Nanofiber Containing Silica and Antibiotic
The biocompatible and biodegradable polymer nanofiber with high potential for anti-bacterial coating are used for: multi-functional membranes, tissue engineering, wound dressings, drug delivery, artificial organs, vascular grafts and etc. Electrospinning nanofiber made of scaffolding due to characteristics such as high surface to volume ratio, high porosity and very fine pores are used for a wi...
متن کاملA Review of Tissue‐Engineered Cartilage Utilizing Fibrin and Its Composite
Suitable alternatives are made for damaged or diseased organs and tissues in tissue engineering by combining cellular and molecular biology with materials and mechanical engineering. Fibrin is a critical blood component responsible for homeostasis, used extensively as a biopolymer scaffold in tissue engineering. This study summarizes the latest developments in organ and tissue regeneration usin...
متن کاملNanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior
Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a n...
متن کاملTemplate-assisted assembly of electrospun fibers
Ordinarily, the electrospinning process generates one-dimensional fibers which assemble into nonwoven membrane structures due to instabilities in the fluid jet. In this paper, an electrospinning procedure is developed that utilizes patterned collectors to produce aligned membranes with designed topological structures. The template-assisted electrospinning approach is demonstrated using polycapr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of tissue engineering and regenerative medicine
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2011