ar X iv : g r - qc / 0 50 10 24 v 1 8 J an 2 00 5 Conformal geometrodynamics

نویسنده

  • Charles H-T Wang
چکیده

The standard geometrodynamics is reformulated into a theory of conformal geometrodynamics by extending the ADM phase space for canonical general relativity to a phase space consisting of York’s exterior mean curvature time, conformal 3-metric and their momenta. Accordingly, an additional constraint is introduced, called the conformal constraint. In terms of the new canonical variables, a diffeomorphism constraints is derived from the original momentum constraint. The Hamiltonian constraint then takes a new form. It turns out to be the sum of an expression that previously appeared in the literature and another expression quadratic in the conformal constraint. The complete set of the conformal, diffeomorphism and Hamiltonian constraints are shown to be of first class through the explicit construction of their Poisson brackets. The extended algebra of constraints has as subalgebras the Dirac algebra for the deformations and Lie algebra for the conformorphism transformations of the spatial hypersurface. This is followed by a discussion of potential implications of the presented theory on the Dirac constraint quantization of general relativity. A formal argument is made to support the use of the York time in formulating the unitary functional evolution of quantum gravity. Finally, the prospect of future work is briefly outlined. 1 Overview of the conventional geometrodynamics We start by recapitulating the essence of the standard Dirac-ADM paradigm of canonical gravity [1, 2]. The spacetime is assumed to be globally hyperbolic with compact spatial sectors. Under a 3 + 1 split using arbitrary space-time coordinates (xa, t) the metric is expressed as ds = −Ndt + gab(dx +Ndt)(dx +N dt) (1) in terms of the spatial metric gab, lapse function N and shift vector N a, where a, b, · · · = 1, 2, 3 denote space coordinate indices. These indices may be lowered and raised using gab and its inverse ∗Previous address: Department of Physics, Lancaster University, Lancaster LA1 4YB, England Permanent address from 1 January 2005 As Visiting Fellow

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : g r - qc / 0 20 90 18 v 1 6 S ep 2 00 2 Conformal Einstein evolution ∗

We discuss various properties of the conformal field equations and their consequences for the asymptotic structure of space-times.

متن کامل

ar X iv : g r - qc / 0 51 10 40 v 1 8 N ov 2 00 5 Canonical gauge - invariant variables for scalar perturbations in synchronous coordinates

Under an appropriate change of the perturbation variable LifshitzKhalatnikov propagation equations for the scalar perturbation reduce to d’Alembert equation. The change of variables is based on the Darboux transform.

متن کامل

ar X iv : g r - qc / 0 50 31 10 v 1 2 8 M ar 2 00 5 The leader operators of the ( d + 1 ) - dimensional relativistic rotating oscillators

The leader operators of the (d + 1)-dimensional relativistic rotating oscillators Abstract The main pairs of leader operators of the quantum models of rela-tivistic rotating oscillators in arbitrary dimensions are derived. To this end one exploits the fact that these models generate Pöschl-Teller radial problems with remarkable properties of supersymmetry and shape invariance.

متن کامل

ar X iv : g r - qc / 0 10 51 08 v 1 2 8 M ay 2 00 1 Non - trivial Solutions of the Bach Equation Exist

We show that solutions of the Bach equation exist which are not conformal Einstein spaces. In connection with fourth order gravitational field equations, cf. e.g. [1, 2] where the breaking of conformal invariance was discussed, the original Bach equation, Bij = 0 , (1) enjoys current interest. Eq. (1) stems from a Lagrangian L = 1 2 √ −gCijklC , and variation gives, cf. Bach [3], 1 √−g δL/δg ij...

متن کامل

ar X iv : g r - qc / 0 50 51 30 v 2 1 S ep 2 00 5 An Exact Solution for Static Scalar Fields Coupled to Gravity in ( 2 + 1 ) - Dimensions

We obtain an exact solution for the Einstein’s equations with cosmological constant coupled to a scalar, static particle in static, ”spherically” symmetric background in 2 + 1 dimensions. ————————————————————————————

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005