Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness.
نویسندگان
چکیده
The patch clamp-liposome technique was used to examine the stretch sensitivity of a model membrane ion channel, gramicidin A, in membrane patches of different bilayer thickness. We found that small changes in phospholipid acyl chain length (i.e., PC-20 to PC-18) can switch gramicidin A from a stretch-activated to a stretch-inactivated channel. The demonstration that subnanometer changes in bilayer thickness can reverse the response polarity of a model channel has implications for other signaling proteins that may experience local changes in bilayer thickness as a consequence of dynamic targeting to lipid microdomains, electrocompression, or chemical modification of the bilayer.
منابع مشابه
Membrane Stretch Slows the Concerted Step prior to Opening in a Kv Channel
In the simplest model of channel mechanosensitivity, expanded states are favored by stretch. We showed previously that stretch accelerates voltage-dependent activation and slow inactivation in a Kv channel, but whether these transitions involve expansions is unknown. Thus, while voltage-gated channels are mechanosensitive, it is not clear whether the simplest model applies. For Kv pore opening ...
متن کاملMembrane Tension Accelerates Rate-limiting Voltage-dependent Activation and Slow Inactivation Steps in a Shaker Channel
A classical voltage-sensitive channel is tension sensitive--the kinetics of Shaker and S3-S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982-2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltag...
متن کاملCapsaicin regulates voltage-dependent sodium channels by altering lipid bilayer elasticity.
At submicromolar concentrations, capsaicin specifically activates the TRPV1 receptor involved in nociception. At micro- to millimolar concentrations, commonly used in clinical and in vitro studies, capsaicin also modulates the function of a large number of seemingly unrelated membrane proteins, many of which are similarly modulated by the capsaicin antagonist capsazepine. The mechanism(s) under...
متن کاملRegulation of Sodium Channel Function by Bilayer Elasticity
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, loc...
متن کاملTheoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (Pt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 7 شماره
صفحات -
تاریخ انتشار 2002