Fractional ( P, Q)-total list colorings of graphs
نویسندگان
چکیده
Let r, s ∈ N, r ≥ s, and P and Q be two additive and hereditary graph properties. A (P,Q)-total (r, s)-coloring of a graph G = (V,E) is a coloring of the vertices and edges of G by s-element subsets of Zr such that for each color i, 0 ≤ i ≤ r − 1, the vertices colored by subsets containing i induce a subgraph of G with property P, the edges colored by subsets containing i induce a subgraph of G with property Q, and color sets of incident vertices and edges are disjoint. The fractional (P,Q)-total chromatic number χ f,P,Q(G) of G is defined as the infimum of all ratios r/s such that G has a (P,Q)-total (r, s)-coloring. 168 A. Kemnitz, P.Mihók and M. Voigt A (P,Q)-total independent set T = VT ∪ET ⊆ V ∪E is the union of a set VT of vertices and a set ET of edges of G such that for the graphs induced by the sets VT and ET it holds that G[VT ] ∈ P, G[ET ] ∈ Q, and G[VT ] and G[ET ] are disjoint. Let TP,Q be the set of all (P,Q)-total independent sets of G. Let L(x) be a set of admissible colors for every element x ∈ V ∪E. The graph G is called (P,Q)-total (a, b)-list colorable if for each list assignment L with |L(x)| = a for all x ∈ V ∪E it is possible to choose a subset C(x) ⊆ L(x) with |C(x)| = b for all x ∈ V ∪ E such that the set Ti which is defined by Ti = {x ∈ V ∪E : i ∈ C(x)} belongs to TP,Q for every color i. The (P,Q)choice ratio chrP,Q(G) of G is defined as the infimum of all ratios a/b such that G is (P,Q)-total (a, b)-list colorable. We give a direct proof of χ f,P,Q(G) = chrP,Q(G) for all simple graphs G and we present for some properties P and Q new bounds for the (P,Q)-total chromatic number and for the (P,Q)-choice ratio of a graph G.
منابع مشابه
Generalized fractional and circular total colorings of graphs
Let P and Q be additive and hereditary graph properties, r, s ∈ N, r ≥ s, and [Zr] be the set of all s-element subsets of Zr. An (r, s)-fractional This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-0023-10 and by the Slovak VEGA Grant 1/0652/12. 2 A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová and R. Soták (P,Q)-total coloring of G is an a...
متن کاملFractional Q-edge-coloring of Graphs
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let Q be an additive hereditary property of graphs. A Q-edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property Q. In this paper we present some results on fractional Q-edge-colorings. We determine...
متن کاملGeneralized fractional total colorings of graphs
Let P and Q be additive and hereditary graph properties and let r, s be integers such that r ≥ s. Then an r s -fractional (P,Q)-total coloring of a finite graph G = (V,E) is a mapping f , which assigns an s-element subset of the set {1, 2, . . . , r} to each vertex and each edge, moreover, for any color i all vertices of color i induce a subgraph with property P, all edges of color i induce a s...
متن کاملGeneralized total colorings of graphs
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let P and Q be additive hereditary properties of graphs. A (P ,Q)-total coloring ∗Research supported in part by Slovak VEGA Grant 2/0194/10. 210 M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók of a simple graphG is a coloring of the vertices V (G) and edgesE(G) of G...
متن کاملOn Group Choosability of Total Graphs
In this paper, we study the group and list group colorings of total graphs and present group coloring versions of the total and list total colorings conjectures.We establish the group coloring version of the total coloring conjecture for the following classes of graphs: graphs with small maximum degree, two-degenerate graphs, planner graphs with maximum degree at least 11, planner graphs withou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 33 شماره
صفحات -
تاریخ انتشار 2013