An Efficient Reduced-order Method for Hessian Matrix Construction

نویسندگان

  • YoungSuk Bang
  • Hany S. Abdel-Khalik
چکیده

When nonlinear behavior must be considered in sensitivity analysis studies, one needs to approximate higher order derivatives of the response of interest with respect to all input data. This paper presents an application of a general reduced order method to constructing higher order derivatives of response of interest with respect to all input data. In particular, we apply the method to constructing all second order derivatives which are often compactly combined in a matrix denoted by the Hessian matrix. Compared to the state-of-the-art methods for Hessian constructions including notably rank-update formulas, the presented Subspace Reduced Order Method requires only r evaluations of the first order derivatives as opposed to n, where r is the rank of the Hessian matrix, and n is the number of input data. Moreover, the new method is less sensitive to numerical errors as it does not rely on rank-update formulas. Finally, in contract to a class of rank-update methods which requires serial evaluation of derivatives, our method evaluates the r derivatives in parallel, thereby rendering it more suitable for coarse-grain parallelization. The paper derives the new methods and applies it to a criticality problem employing the SCALE 6.1 (TSUNAMI-2D) code system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

Neural Network Training with Second Order Algorithms

Second order algorithms are very efficient for neural network training because of their fast convergence. In traditional Implementations of second order algorithms [Hagan and Menhaj 1994], Jacobian matrix is calculated and stored, which may cause memory limitation problems when training large-sized patterns. In this paper, the proposed computation is introduced to solve the memory limitation pr...

متن کامل

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

The Dynamics of Matrix Momentum

We analyse the matrix momentum algorithm, which provides an efficient approximation to on-line Newton’s method, by extending a recent statistical mechanics framework to include second order algorithms. We study the efficacy of this method when the Hessian is available and also consider a practical implementation which uses a single example estimate of the Hessian. The method is shown to provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011