Aluminum-maltolate induces apoptosis and necrosis in neuro-2a cells: potential role for p53 signaling.
نویسندگان
چکیده
Aluminum maltolate (Al-malt) causes neurodegeneration following in vivo exposure, and apoptosis plays a prominent role. The objective of this study was to define the form of cell death induced by Al-malt and to establish an in vitro model system amenable to mechanistic investigations of Al-malt-induced cell death. Neuro-2a cells, a murine neuroblastoma cell line, were treated with Al-malt for 24 h, following which mode of cell death and alterations in apoptosis-related gene expression were studied. Al-malt concentration-dependently increased cell death. The mode of cell death was a combination of apoptosis and necrosis. Treatment with Al-malt resulted in caspase 3 activation and the externalization of phosphatidyl serine, both indicative of apoptosis. In addition, nuclear condensation and fragmentation were evident. Interestingly, pretreatment with cycloheximide (CHX), a potent protein synthesis inhibitor markedly reduced Al-malt-induced apoptosis, indicating that altered gene expression was critical for this form of cell death. Pretreatment with CHX had no effect on necrosis induced by Al-malt. Analysis of gene expression showed that p53 mRNA was increased following treatment with Al-malt. This increase was accompanied by a marked inhibition of Bcl2 expression and an increase in BAX expression, a pattern of gene expression suggestive of a pro-apoptotic shift. Results show for the first time that p53 is induced by Al in neuron-like cells and suggest that the p53-dependent intrinsic pathway may be responsible for Al-induced apoptosis. Future studies investigating the role of p53 in Al neurotoxicity both in vivo and in vitro are warranted.
منابع مشابه
Kalirin-7 plays the neuroprotective role in Neuro-2A cells injured by oxygen-glucose deprivation and reperfusion through Rac1 activation
Objective(s): The study explored the neuroprotective role of Kalirin-7 (Kal-7) in Neuro-2A cells after oxygen-glucose deprivation and reperfusion (OGD/R) treatment.Materials and Methods: The study used an OGD/R model of mouse Neuro-2A neuroblastoma cells in vitro. Cells were transfected with pCAGGS-Kal-7 to up-regulating kal-7. Then cell proliferation and apoptosis were respectively analyzed by...
متن کاملSodium valproate ameliorates aluminum-induced oxidative stress and apoptosis of PC12 cells
Objective(s): According to recent studies, valproate shows some protection against oxidative stress (OS) induced by neurotoxins. Current investigation tried to determine the possible ameliorating effects of sodium valproate (SV) against aluminum (Al)-induced cell death, apoptosis, mitochondrial membrane potential (MMP), and OS in PC12 cells.Materials ...
متن کاملDevelopment of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate.
Clinical studies have shown gallium nitrate to have significant antitumor activity against non-Hodgkin's lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents. In this study, we compared the cytotoxicity of gallium maltolate, a novel gallium compound, with gallium nitrate in lymphoma cell lines, including p53 varian...
متن کاملA Novel Anticancer Agent, 8-Methoxypyrimido[4′,5′:4,5]thieno(2,3-b) Quinoline-4(3H)-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways
Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido [4',5':4,5]thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an...
متن کاملThe Hydroalcoholic Extract of Saffron Protects PC12 Cells against Aluminum-Induced Cell Death and Oxidative Stress in Vitro
Background: Aluminum (Al) exposure is among the environmental risk factors that may involve in the pathogenesis of neurodegenerative diseases. Oxidative stress has a critical role in the Al-induced toxicity. Saffron is a plant with potent radical scavenging and anti-oxidative properties. This investigation was designed to evaluate the possible protective effects of saffron extract (SE) on alumi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 83 2 شماره
صفحات -
تاریخ انتشار 2005