Sivashinsky equation in a rectangular domain.
نویسنده
چکیده
The (Michelson) Sivashinsky equation of premixed flames is studied in a rectangular domain in two dimensions. A huge number of two-dimensional (2D) stationary solutions are trivially obtained by the addition of two 1D solutions. With Neumann boundary conditions, it is shown numerically that adding two stable 1D solutions leads to a 2D stable solution. This type of solution is shown to play an important role in the dynamics of the equation with additive noise.
منابع مشابه
Application of He's homotopy perturbation method for solving Sivashinsky equation
In this paper, the solution of the evolutionaryfourth-order in space, Sivashinsky equation is obtained by meansof homotopy perturbation method (textbf{HPM}). The results revealthat the method is very effective, convenient and quite accurateto systems of nonlinear partial differential equations.
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملUncertainty estimates and L2 bounds for the Kuramoto-Sivashinsky equation
We consider the Kuramoto-Sivashinsky (KS) equation in one dimension with periodic boundary conditions. We apply a Lyapunov function argument similar to the one first introduced by Nicolaenko, Scheurer, and Temam [18], and later improved by Collet, Eckmann, Epstein and Stubbe[1], and Goodman [10] to prove that lim sup t→∞ ||u||2 ≤ CL 3 2 . This result is slightly weaker than that recently announ...
متن کاملHolistic finite differences accurately model the dynamics of the Kuramoto-Sivashinsky equation
We analyse the nonlinear Kuramoto-Sivashinsky equation to develop an accurate finite difference approximation to its dynamics. The analysis is based upon centre manifold theory so we are assured that the finite difference model accurately models the dynamics and may be constructed systematically. The theory is applied after dividing the physical domain into small elements by introducing insulat...
متن کاملLeast squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2007