Local Euler-Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of a rational polytope

نویسندگان

  • Velleda Baldoni
  • Nicole Berline
  • Michèle Vergne
چکیده

Velleda Baldoni, Nicole Berline, Michèle Vergne. Local Euler-Maclaurin expansion of Barvinok valuations and Ehrhart coefficients of a rational polytope. Matthias Beck, Christian Haase, Bruce Reznick, Michèle Vergne, Volkmar Welker and Ruriko Yoshida. Integer Points in Polyhedra-Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, American Mathematical Society, pp.15-33, 2008, Contemporary Mathematics, Vol. 452, 978-0-8218-4173-0. <10.1090/conm/452>.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate Sums on Polyhedra Ii:bidegree and Poisson Formula

We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasipolynomial of a rational simplex, Math. Comp. 75 (2006), 1449– 1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhed...

متن کامل

ar X iv : 1 40 4 . 00 65 v 2 [ m at h . C O ] 3 N ov 2 01 4 INTERMEDIATE SUMS ON POLYHEDRA II : BIDEGREE AND POISSON FORMULA

We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasipolynomial of a rational simplex, Math. Comp. 75 (2006), 1449– 1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhed...

متن کامل

Computing the Ehrhart quasi-polynomial of a rational simplex

We present a polynomial time algorithm to compute any fixed number of the highest coefficients of the Ehrhart quasi-polynomial of a rational simplex. Previously such algorithms were known for integer simplices and for rational polytopes of a fixed dimension. The algorithm is based on the formula relating the kth coefficient of the Ehrhart quasi-polynomial of a rational polytope to volumes of se...

متن کامل

Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra

This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients of the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a ...

متن کامل

Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory

We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449–1466]. For a given semi-rational polytope p and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope p parallel to the subspace L and sum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006