Nitroxides and nucleic acids: Chemistry and electron paramagnetic resonance (EPR) spectroscopy*
نویسنده
چکیده
Electron paramagnetic resonance (EPR) spectroscopy has increasingly been applied for the study of nucleic acid structure and dynamics. Such studies require incorporation of free radicals (spin labels) into the biopolymer. The labels can be incorporated during chemical synthesis of the oligomer (phosphoramidite approach) or postsynthetically, by reaction of a spin-labeling reagent with a reactive functional group on the oligonucleotide. Incorporation of the rigid nitroxide spin label Ç is an example of the phosphoramidite method, and reaction of a spin-labeled azide with an alkyne-modified oligomer to yield a triazole-derived, spin-labeled nucleotide illustrates the postsynthetic spin-labeling strategy. Characterization and application of these labels to study structural features of DNA by EPR spectroscopy is discussed. Finally, a new spin-labeling strategy is described for nucleic acids that relies on noncovalent interactions between a spin-labeled nucleobase and an abasic site in duplex DNA.
منابع مشابه
Demystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules
Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...
متن کاملSite-Directed Spin Labeling for EPR Studies of Nucleic Acids
Electron paramagnetic resonance (EPR) spectroscopy has emerged as a valuable technique to study the structure and dynamics of nucleic acids and their complexes with other biomolecules. EPR studies require incorporation of stable free radicals (spin labels), usually aminoxyl radicals (nitroxides), at specific sites in the nucleic acids using site-directed spin labeling (SDSL). In addition to the...
متن کاملELECTRON PARAMAGNETIC RESONANCE (EPR) SPECTROSCOPY AND GEOCHEMISTRY IN TIN EXPLORATION AT RENISON, TASMANIA AUSTRALIA
Rock powder of dolomite samples from the Renison mine area of Tasmania, Australia were analyzed by electron paramagnentic resonance spectroscopy (EPR), Atomic Absorption and Mass Spectrometer to identify alteration related to mineralisation. The least-altered dolomite samples, which are not effected by circulation of diagenetic and hydrothermal fluids are characterised by low Mn and Fe and ...
متن کاملA facile method for attaching nitroxide spin labels at the 5′ terminus of nucleic acids†
In site-directed spin labeling (SDSL), a nitroxide moiety containing a stable, unpaired electron is covalently attached to a specific site within a macromolecule, and structural and dynamic information at the labeling site is obtained via electron paramagnetic resonance (EPR) spectroscopy. Successful SDSL requires efficient site-specific incorporation of nitroxides. Work reported here presents ...
متن کاملIn-cell approaches in electron paramagnetic resonance spectroscopy to study conformations of DNA G-quadruplexes
............................................................................................. Introduction.......................................................................................... I. Literature overview 1. DNA G-quadruplexes........................................................................... 1.1 Structural characterization....................................................
متن کامل