How to Prove Representation-Independent Independence Results
نویسندگان
چکیده
A true assertion about the input-output behavior of a Turing Machine M may be independent of (i.e., impossible to prove in) a theory T because the computational behavior of M is particularly opaque, or because the function or set computed by M is inherently subtle. The latter sorts of representation-independent independence results are more satisfying. For 2 assertions, the best-known techniques for proving independence yield representation-independent results as a matter of course. This paper illustrates current understanding of unprovability for 2 assertions by demonstrating that very weak conditions on classses of sets S and R guarantee that there exists a set L 0 2 R ? S such that L 0 is not provably innnite (hence, not provably nonregular, nondeterministic, non-context-free, not in P, etc.). Under slightly stronger conditions, such L 0 s may be found within every L 2 R ? S.
منابع مشابه
On the Stability of Independence Polynomials
The independence polynomial of a graph is the generating polynomial for the number of independent sets of each size and its roots are called independence roots. We investigate the stability of such polynomials, that is, conditions under which the independence roots lie in the left half-plane. We use results from complex analysis to determine graph operations that result in a stable or nonstable...
متن کاملOhba’s Conjecture is True for Graphs with Independence Number 3
Ohba’s conjecture states that if a graph G has chromatic number χ(G) = k and has at most 2k+1 vertices, then G has choice number Ch(G) equal to χ(G). We prove that Ohba’s conjecture is true for each graph that has independence number 3. We also prove that Ohba’s conjecture is true for each graph G that has an independent set S of size 4 such that G\S has independence number 3.
متن کامل?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups
In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...
متن کاملOn the Location of Roots of Independence Polynomials
The independence polynomial of a graph G is the function i(G, x) = ∑k≥0 ik xk , where ik is the number of independent sets of vertices in G of cardinality k. We prove that real roots of independence polynomials are dense in (−∞, 0], while complex roots are dense in C, even when restricting to well covered or comparability graphs. Throughout, we exploit the fact that independence polynomials are...
متن کاملOn the Clar Number of Benzenoid Graphs
A Clar set of a benzenoid graph B is a maximum set of independent alternating hexagons over all perfect matchings of B. The Clar number of B, denoted by Cl(B), is the number of hexagons in a Clar set for B. In this paper, we first prove some results on the independence number of subcubic trees to study the Clar number of catacondensed benzenoid graphs. As the main result of the paper we prove a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 24 شماره
صفحات -
تاریخ انتشار 1987