IQGAP1 regulates NR2A signaling, spine density, and cognitive processes.

نویسندگان

  • Can Gao
  • Shanti F Frausto
  • Anita L Guedea
  • Natalie C Tronson
  • Vladimir Jovasevic
  • Katie Leaderbrand
  • Kevin A Corcoran
  • Yomayra F Guzmán
  • Geoffrey T Swanson
  • Jelena Radulovic
چکیده

General or brain-region-specific decreases in spine number or morphology accompany major neuropsychiatric disorders. It is unclear, however, whether changes in spine density are specific for an individual mental process or disorder and, if so, which molecules confer such specificity. Here we identify the scaffolding protein IQGAP1 as a key regulator of dendritic spine number with a specific role in cognitive but not emotional or motivational processes. We show that IQGAP1 is an important component of NMDAR multiprotein complexes and functionally interacts with the NR2A subunits and the extracellular signal-regulated kinase 1 (ERK1) and ERK2 signaling pathway. Mice lacking the IQGAP1 gene exhibited significantly lower levels of surface NR2A and impaired ERK activity compared to their wild-type littermates. Accordingly, primary hippocampal cultures of IQGAP1(-/-) neurons exhibited reduced surface expression of NR2A and disrupted ERK signaling in response to NR2A-dependent NMDAR stimulation. These molecular changes were accompanied by region-specific reductions of dendritic spine density in key brain areas involved in cognition, emotion, and motivation. IQGAP1 knock-outs exhibited marked long-term memory deficits accompanied by impaired hippocampal long-term potentiation (LTP) in a weak cellular learning model; in contrast, LTP was unaffected when induced with stronger stimulation paradigms. Anxiety- and depression-like behavior remained intact. On the basis of these findings, we propose that a dysfunctional IQGAP1 gene contributes to the cognitive deficits in brain disorders characterized by fewer dendritic spines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Spine Density and Morphology by IQGAP1 Protein Domains

IQGAP1 is a scaffolding protein that regulates spine number. We now show a differential role for IQGAP1 domains in spine morphogenesis, in which a region of the N-terminus that promotes Arp2/3-mediated actin polymerization and branching stimulates spine head formation while a region that binds to Cdc42 and Rac is required for stalk extension. Conversely, IQGAP1 rescues spine deficiency induced ...

متن کامل

The nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density.

Abnormalities in dendritic spines have long been associated with cognitive dysfunction and neurodevelopmental delay, whereas rapid changes in spine shape underlie synaptic plasticity. The key regulators of cytoskeletal reorganization in dendrites and spines are the Rho GTPases, which modify actin polymerization in response to synaptic signaling. Rho GTPase activity is modulated by multiple regu...

متن کامل

IQGAP1 Integrates Ca/Calmodulin and Cdc42 Signaling*

Calmodulin regulates diverse Ca-dependent cellular processes, including cell cycle progression and cytoskeletal rearrangement. A recently identified calmodulin-binding protein, IQGAP1, interacts with both actin and Cdc42. In this study, evidence is presented that, in the absence of Ca, IQGAP1 bound to Cdc42, which maintained Cdc42 in the active GTP-bound state. Addition of Ca both directly abro...

متن کامل

IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling.

Calmodulin regulates diverse Ca2+-dependent cellular processes, including cell cycle progression and cytoskeletal rearrangement. A recently identified calmodulin-binding protein, IQGAP1, interacts with both actin and Cdc42. In this study, evidence is presented that, in the absence of Ca2+, IQGAP1 bound to Cdc42, which maintained Cdc42 in the active GTP-bound state. Addition of Ca2+ both directl...

متن کامل

N-Cadherin Regulates Cytoskeletally Associated IQGAP1/ERK Signaling and Memory Formation

Cadherin-mediated interactions are integral to synapse formation and potentiation. Here we show that N-cadherin is required for memory formation and regulation of a subset of underlying biochemical processes. N-cadherin antagonistic peptide containing the His-Ala-Val motif (HAV-N) transiently disrupted hippocampal N-cadherin dimerization and impaired the formation of long-term contextual fear m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 23  شماره 

صفحات  -

تاریخ انتشار 2011