The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants.
نویسندگان
چکیده
The photosynthetic gene rbcL has been lost or dramatically altered in some lineages of nonphotosynthetic parasitic plants, but the dynamics of these events following loss of photosynthesis and whether rbcL has sustained functionally significant changes in photosynthetic parasitic plants are unknown. To assess the changes to rbcL associated with the loss of functional constraints for photosynthesis, nucleotide sequences from nonparasitic and parasitic plants of Scrophulariales were used for phylogeny reconstruction and character analysis. Plants in this group display a broad range of parasitic abilities, from photosynthetic ("hemiparasites") to nonphotosynthetic ("holoparasites"). With the exception of Conopholis (Orobanchaceae), the rbcL locus is present in all parasitic plants of Scrophulariales examined. Several holoparasitic genera included in this study, including Boschniakia, Epifagus, Orobanche, and Hyobanche, have rbcL pseudogenes. However, the holoparasites Alectra orobanchoides, Harveya capensis, Harveya purpurea, Lathraea clandestina, Orobanche corymbosa, O. fasciculata, and Striga gesnerioides have intact open reading frames (ORFs) for the rbcL gene. Phylogenetic hypotheses based on rbcL are largely in agreement with those based on sequences of the nonphotosynthetic genes rps2 and matK and show a single origin of parasitism, and loss of photosynthesis and pseudogene formation have been independently derived several times in Scrophulariales. The mutations in rbcL in nonparasitic and hemiparasitic plants would result in largely conservative amino acid substitutions, supporting the hypothesis that functional proteins can experience only a limited range of changes, even in minimally photosynthetic plants. In contrast, ORFs in some holoparasites had many previously unobserved missense substitutions at functionally important amino acid residues, suggesting that rbcL genes in these plants have evolved under relaxed or altered functional constraints.
منابع مشابه
Molecular evolution of rbcL in the mycoheterotrophic coralroot orchids (Corallorhiza Gagnebin, Orchidaceae).
The RuBisCO large subunit gene (rbcL) has been the focus of numerous plant phylogenetic studies and studies on molecular evolution in parasitic plants. However, there has been a lack of investigation of photosynthesis gene molecular evolution in fully mycoheterotrophic plants. These plants invade pre-existing mutualistic associations between ectomycorrhizal trees and fungi, from which they obta...
متن کاملEvolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation.
The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability rangi...
متن کاملMechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family.
Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). B...
متن کاملPower analysis of tests for loss of selective constraint in cave crayfish and nonphotosynthetic plant lineages.
Loss of selective constraint on a gene may be expected following changes in the environment or life history that render its function unnecessary. The long-term persistence of protein-coding genes after the loss of known functional necessity can occur by chance or because of selective maintenance of an unknown gene function. The selective maintenance of an alternative gene function is not demons...
متن کاملThe Plastid Genome of Mycoheterotrophic Monocot Petrosavia stellaris Exhibits Both Gene Losses and Multiple Rearrangements
Plastid genomes of nonphotosynthetic plants represent a perfect model for studying evolution under relaxed selection pressure. However, the information on their sequences is still limited. We sequenced and assembled plastid genome of Petrosavia stellaris, a rare mycoheterotrophic monocot plant. After orchids, Petrosavia represents only the second family of nonphotosynthetic monocots to have its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 15 10 شماره
صفحات -
تاریخ انتشار 1998