Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene.

نویسندگان

  • O Dogbo
  • A Laferriére
  • A D'Harlingue
  • B Camara
چکیده

Phytoene is the first C(40) intermediate in the biogenesis of carotenoids. It is formed by two enzyme activities, catalyzing (i) the coupling of two molecules of geranylgeranyl diphosphate to yield prephytoene diphosphate and (ii) the conversion of prephytoene diphosphate into phytoene. We show now, with Capsicum chromoplast stroma, that the overall activity resides in a single protein, which has been purified to homogeneity by affinity chromatography. The monomeric structure and the molecular size (M(r) 47,500) were demonstrated by NaDodSO(4)/PAGE and glycerol gradient centrifugation. Further characterization was achieved by using specific antibodies which allowed immunofractionation and immunoprecipitation of the enzymatic activity from chromoplast stroma. The two reactions followed conventional Michaelis-Menten kinetics, with K(m) values of 0.30 muM and 0.27 muM, respectively, for geranylgeranyl diphosphate and prephytoene diphosphate. The activity of the enzyme depends strictly upon the presence of Mn(2+). This selectivity may be one of the factors regulating the competition with potentially rival enzymes converting geranylgeranyl diphosphate into other plastid terpenoids. The two enzymatic reactions were inhibited by inorganic pyrophosphate and by the arginine-specific reagent hydroxyphenylglyoxal. In no instance were the two reactions kinetically uncoupled. These properties strongly suggest that the same enzyme catalyzes the two consecutive reactions, and we propose to name it phytoene synthase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation.

Carotenoids are C40 tetraterpenoids synthesized by nuclear-encoded multienzyme complexes located in the plastids of higher plants. To understand further the components and mechanisms involved in carotenoid synthesis, we screened Arabidopsis for mutations that disrupt this pathway and cause accumulation of biosynthetic intermediates. Here, we report the identification and characterization of two...

متن کامل

Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant.

Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other th...

متن کامل

Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis.

Carotenoids are essential photoprotective and antioxidant pigments synthesized by all photosynthetic organisms. Most carotenoid biosynthetic enzymes were thought to have evolved independently in bacteria and plants. For example, in bacteria, a single enzyme (CrtI) catalyzes the four desaturations leading from the colorless compound phytoene to the red compound lycopene, whereas plants require t...

متن کامل

Localisation of Carotenogenic Enzyme Activity

In the fungus Neurospora crassa, the carotenogenic enzyme system, catalyzing both the synthesis of phytoene and that of more un saturated carotenoids, is membrane—bound. Using geranylgeranyl pyrophosphate as a substrate no co—factors are required for the conversion to carotenoids, but Mg2+ions stimulate the activity. Carotenogenic enzymes have been solu-. bilized partly from membranes by deterg...

متن کامل

Isolation and Analysis of the Cppsy Gene and Promoter from Chlorella protothecoides CS-41

Phytoene synthase (PSY) catalyzes the condensation of two molecules of geranylgeranyl pyrophosphate to form phytoene, the first colorless carotene in the carotenoid biosynthesis pathway. So it is regarded as the crucial enzyme for carotenoid production, and has unsurprisingly been involved in genetic engineering studies of carotenoid production. In this study, the psy gene from Chlorella protot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 19  شماره 

صفحات  -

تاریخ انتشار 1988