A multi-stable isotope framework to understand eutrophication in aquatic ecosystems.
نویسندگان
چکیده
Eutrophication is a globally significant challenge facing aquatic ecosystems, associated with human induced enrichment of these ecosystems with nitrogen (N) and phosphorus (P). However, the limited availability of inherent labels for P and N has constrained understanding of the triggers for eutrophication in natural ecosystems and appropriate targeting of management responses. This paper proposes and evaluates a new multi-stable isotope framework that offers inherent labels to track biogeochemical reactions governing both P and N in natural ecosystems. The framework couples highly novel analysis of the oxygen isotope composition of phosphate (δ(18)OPO4) with dual isotope analysis of oxygen and N within nitrate (δ(15)NNO3, δ(18)ONO3) and with stable N isotope analysis in ammonium (δ(15)NNH4). The River Beult in England is used as an exemplar system for initial evaluation of this framework. Our data demonstrate the potential to use stable isotope labels to track the input and downstream fate of nutrients from point sources, on the basis of isotopic differentiation for both P and N between river water and waste water treatment work effluent (mean difference = +1.7‰ for δ(18)OPO4; +15.5‰ for δ(15)NNH4 (under high flow); +7.3‰ for δ(18)ONO3 and +4.4‰ for δ(15)NNO3). Stable isotope data reveal nutrient inputs to the river upstream of the waste water treatment works that are consistent with partially denitrified sewage or livestock sources of nitrate (δ(15)NNO3 range = +11.5 to +13.1‰) and with agricultural sources of phosphate (δ(18)OPO4 range = +16.6 to +19.0‰). The importance of abiotic and metabolic processes for the in-river fate of N and P are also explored through the stable isotope framework. Microbial uptake of ammonium to meet metabolic demand for N is suggested by substantial enrichment of δ(15)NNH4 (by 10.2‰ over a 100 m reach) under summer low flow conditions. Whilst the concentration of both nitrate and phosphate decreased substantially along the same reach, the stable isotope composition of these ions did not vary significantly, indicating that concentration changes are likely driven by abiotic processes of dilution or sorption. The in-river stable isotope composition and the concentration of P and N were also largely constant downstream of the waste water treatment works, indicating that effluent-derived nutrients were not strongly coupled to metabolism along this in-river transect. Combined with in-situ and laboratory hydrochemical data, we believe that a multi-stable isotope framework represents a powerful approach for understanding and managing eutrophication in natural aquatic ecosystems.
منابع مشابه
Phosphate oxygen isotopes within aquatic ecosystems: global data synthesis and future research priorities.
The oxygen isotope ratio of dissolved inorganic phosphate (δ(18)Op) represents a novel and potentially powerful stable isotope tracer for biogeochemical research. Analysis of δ(18)Op may offer new insights into the relative importance of different sources of phosphorus within natural ecosystems. Due to the isotope fractionations that occur alongside the metabolism of phosphorus, δ(18)Op could a...
متن کاملTracing the Sources and Biogeochemical Cycling of Phosphorus in Aquatic Systems Using Isotopes of Oxygen in Phosphate
Phosphorous (P) is an essential nutrient for all living organisms and when available in surplus could cause eutrophication in aquatic systems. While P has only one stable isotope, P in most organic and inorganic P forms is strongly bonded to oxygen (O), which has three stable isotopes, providing a system to track phosphorus cycling and transformations using the stable isotopes of O in phosphate...
متن کاملDetermination of Trophic Structure in Selected Freshwater Ecosystems by using Stable Isotope Analysis
Stable isotope analysis has been used extensively to establish trophic relationships in many ecosystems. Present study utilised stable isotope signatures of carbon and nitrogen to identify trophic structure of aquatic food web in river and rice field ecosystems in Perak, northern peninsular Malaysia. The mean δ13C values of all producers ranged from -35.29 ± 0.21 to -26.00 ± 0.050‰. The greates...
متن کاملProgress of Rural Aquatic Ecosystem Analysis using Stable Isotope Ratios in Japan
Land improvements in Japan involve the need to conserve ecosystems and biodiversity, hence research and research methods related to ecosystem conservation in rural aquatic areas are increasing and developing. Analysis in rural aquatic ecosystems using stable carbon and nitrogen isotope ratios is an important research method and such isotope ratios are used for various purposes when investigatin...
متن کاملMeasuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen.
Understanding river food webs requires distinguishing energy derived from primary production in the river itself (autochthonous) from that produced externally (allochthonous), yet there are no universally applicable and reliable techniques for doing so. We compared the natural abundance stable isotope ratios of hydrogen (deltaD) of allochthonous and autochthonous energy sources in four differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 88 شماره
صفحات -
تاریخ انتشار 2016