MapReduce-based Solutions for Scalable SPARQL Querying
نویسندگان
چکیده
The use of RDF to expose semantic data on the Web has seen a dramatic increase over the last few years. Nowadays, RDF datasets are so big and interconnected that, in fact, classical mono-node solutions present significant scalability problems when trying to manage big semantic data. MapReduce, a standard framework for distributed processing of great quantities of data, is earning a place among the distributed solutions facing RDF scalability issues. In this article, we survey the most important works addressing RDF management and querying through diverse MapReduce approaches, with a focus on their main strategies, optimizations and results. TYPE OF PAPER AND
منابع مشابه
Scalable RDF Graph Querying Using Cloud Computing
With the explosion of the semantic web technologies, conventional SPARQL processing tools do not scale well for large amounts of RDF data because they are designed for use on a single-machine context. Several optimization solutions combined with cloud computing technologies have been proposed to overcome these drawbacks. However, these approaches only consider the SPARQL Basic Graph Pattern pro...
متن کاملA Scale-Out RDF Molecule Store for Improved Co-Identification, Querying and Inferencing
Semantic inferencing and querying across large scale RDF triple stores is notoriously slow. Our objective is to expedite this process by employing Google’s MapReduce framework to implement scale-out distributed querying and reasoning. This approach requires RDF graphs to be decomposed into smaller units that are distributed across computational nodes. RDF Molecules appear to offer an ideal appr...
متن کاملH2RDF+: High-performance distributed joins over large-scale RDF graphs
The proliferation of data in RDF format calls for efficient and scalable solutions for their management. While scalability in the era of big data is a hard requirement, modern systems fail to adapt based on the complexity of the query. Current approaches do not scale well when faced with substantially complex, non-selective joins, resulting in exponential growth of execution times. In this work...
متن کاملCascading map-side joins over HBase for scalable join processing
One of the major challenges in large-scale data processing with MapReduce is the smart computation of joins. Since Semantic Web datasets published in RDF have increased rapidly over the last few years, scalable join techniques become an important issue for SPARQL query processing as well. In this paper, we introduce the Map-Side Index Nested Loop Join (MAPSIN join) which combines scalable index...
متن کاملRDFChain: Chain Centric Storage for Scalable Join Processing of RDF Graphs using MapReduce and HBase
As a massive linked open data is available in RDF, the scalable storage and efficient retrieval using MapReduce have been actively studied. Most of previous researches focus on reducing the number of MapReduce jobs for processing join operations in SPARQL queries. However, the cost of shuffle phase still occurs due to their reduce-side joins. In this paper, we propose RDFChain which supports th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- OJSW
دوره 1 شماره
صفحات -
تاریخ انتشار 2014