Role of sarcoplasmic reticulum in mitochondrial permeability transition and cardiomyocyte death during reperfusion.

نویسندگان

  • Marisol Ruiz-Meana
  • Arancha Abellán
  • Elisabet Miró-Casas
  • Esperanza Agulló
  • David Garcia-Dorado
چکیده

There is solid evidence that a sudden change in mitochondrial membrane permeability (mitochondrial permeability transition, MPT) plays a critical role in reperfusion-induced myocardial necrosis. We hypothesized that sarcoplasmic reticulum (SR) Ca(2+) cycling may induce partial MPT in microdomains of close anatomic proximity between mitochondria and SR, resulting in hypercontracture and cell death. MPT (mitochondrial calcein release), cell length, and sarcolemmal rupture (Trypan blue and lactate dehydrogenase release) were measured in adult rat cardiomyocytes submitted to simulated ischemia (NaCN/2-deoxyglucose, pH 6.4) and reperfusion. On simulated reperfusion, 83 +/- 2% of myocytes developed hypercontracture. In 22 +/- 6% of cases, hypercontracture was associated with sarcolemmal disruption [Trypan blue(+)]. During simulated reperfusion there was a 25% release of cyclosporin A-sensitive mitochondrial calcein (with respect to total mitochondrial calcein content). Simultaneous blockade of SR Ca(2+) uptake and release with thapsigargin and ryanodine, respectively, significantly reduced mitochondrial calcein release, hypercontracture, and cell death during simulated reperfusion. SR Ca(2+) blockers delayed mitochondrial Ca(2+) uptake in digitonin-permeabilized cardiomyocytes but did not have any effect on isolated mitochondria. Pretreatment with colchicine to disrupt microtubule network reduced the degree of fluorescent overlap between SR and mitochondria and abolished the protective effect of SR Ca(2+) blockers on MPT, hypercontracture, and cell death during reperfusion. We conclude that SR Ca(2+) cycling during reperfusion facilitates partial mitochondrial permeabilization due to the close anatomic proximity between both organelles, favoring hypercontracture and cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of sarcoplasmic reticulum in mitochondrial permeability 3 transition and cardiomyocyte death during reperfusion 4 5

11 12 Short title: SR in reperfusion-induced cell death 13 14 Total word count: 6654 15 16 17 18 Corresponding author: 19 Dr. David Garcia-Dorado 20 Servicio de Cardiologia 21 Hospital Universitari Vall d’Hebron 22 Pg. Vall d’Hebron, 119-129 23 08035 Barcelona, Spain 24 Phone:+34-93-4894038 25 Fax:+34-93-4894032 26 E-mail: [email protected] 27 28 29 30 31 Articles in PresS. Am J Physiol Hear...

متن کامل

The Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities

Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...

متن کامل

Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species.

Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mi...

متن کامل

Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes

Uncontrolled release of Ca(2+) from the sarcoplasmic reticulum (SR) contributes to the reperfusion-induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, ma...

متن کامل

Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion

Objective (s) Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT) pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury. Mater...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 297 4  شماره 

صفحات  -

تاریخ انتشار 2009