Phosphorylation of human tau protein by microtubule-associated kinases: GSK3beta and cdk5 are key participants.
نویسندگان
چکیده
Microtubules (MTs), primarily composed of alpha and beta tubulin polymers, must often work in concert with microtubule-associated proteins (MAPs) in order to modulate their functional demands. In a mature brain neuron, one of the key MAPs that resides primarily in the axonal compartment is the tau protein. Tau, in the adult human brain, is a set of six protein isoforms, whose binding affinity to MTs can be modulated by phosphorylation. In addition to the role that phosphorylation of tau plays in the "normal" physiology of neurons, hyperphosphorylated tau is the primary component of the fibrillary pathology in Alzheimer's disease (AD). Although many protein kinases are known to phosphorylate tau in vitro, the in vivo players contributing to the hyperphosphorylation of tau remain elusive. The experiments in this study attempt to define which protein kinases and protein phosphatases reside in the associated network of microtubules, thereby being strategically positioned to influence the phosphorylation of tau. Microtubule fractions are utilized to determine which of the microtubule-associated kinases most readily impacts the phosphorylation of tau at "AD-like" sites. Results from this study indicate that PKA, CK1, GSK3beta, and cdk5 associate with microtubules. Among the MT-associated kinases, GSK3beta and cdk5 most readily contribute to the ATP-induced "AD-like" phosphorylation of tau.
منابع مشابه
Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding.
Glycogen synthase kinase 3beta (GSK3beta) phosphorylates substrates, including the microtubule-associated protein tau, at both primed and unprimed epitopes. GSK3beta phosphorylation of tau negatively regulates tau-microtubule interactions; however the differential effects of phosphorylation at primed and unprimed epitopes on tau is unknown. To examine the phosphorylation of tau at primed and un...
متن کاملGlycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2.
MARK/Par-1, a kinase family with diverse functions particularly in inducing cell polarity, can phosphorylate microtubule-associated proteins in their repeat domain and cause their detachment from microtubules, and thereby microtubule destabilization. Because of its role in abnormal phosphorylation of the Tau protein in Alzheimer disease, we searched for regulatory kinases. MARK family kinases c...
متن کاملPhysiological and pathological phosphorylation of tau by Cdk5
Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer's disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it i...
متن کاملP 97: Neurodegeneration Induced by Tau protein
Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...
متن کاملSeptin Phosphorylation and Neuronal Degeneration; Role of Cyclin Dependent Kinase 5 (Cdk5)
Cellular function is tightly regulated by protein kinases that orchestrate cell signaling events [1]. During cell replication, kinases activated by cyclin family members (Cdks) play an important role in regulating transitions through the cell cycle in most organisms. Cdks are activated upon association with cyclin regulatory subunits coupled to a phosphorylation event at specific activation sit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience research
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2000