Dynamics of postcritically bounded polynomial semigroups II: fiberwise dynamics and the Julia sets

نویسنده

  • Hiroki Sumi
چکیده

We investigate the dynamics of semigroups generated by polynomial maps on the Riemann sphere such that the postcritical set in the complex plane is bounded. Moreover, we investigate the associated random dynamics of polynomials. Furthermore, we investigate the fiberwise dynamics of skew products related to polynomial semigroups with bounded planar postcritical set. Using uniform fiberwise quasiconformal surgery on a fiber bundle, we show that if the Julia set of such a semigroup is disconnected, then there exist families of uncountably many mutually disjoint quasicircles with uniform dilatation which are parameterized by the Cantor set, densely inside the Julia set of the semigroup. Moreover, we give a sufficient condition for a fiberwise Julia set Jγ to satisfy that Jγ is a Jordan curve but not a quasicircle, the unbounded component of Ĉ \ Jγ is a John domain and the bounded component of C \ Jγ is not a John domain. We show that under certain conditions, a random Julia set is almost surely a Jordan curve, but not a quasicircle. Many new phenomena of polynomial semigroups and random dynamics of polynomials that do not occur in the usual dynamics of polynomials are found and systematically investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of postcritically bounded polynomial semigroups III: classification of semi-hyperbolic semigroups and random Julia sets which are Jordan curves but not quasicircles

We investigate the dynamics of polynomial semigroups (semigroups generated by a family of polynomial maps on the Riemann sphere Ĉ) and the random dynamics of polynomials on the Riemann sphere. Combining the dynamics of semigroups and the fiberwise (random) dynamics, we give a classification of polynomial semigroups G such that G is generated by a compact family Γ, the planar postcritical set of...

متن کامل

Dynamics of postcritically bounded polynomial semigroups

We investigate the dynamics of semigroups generated by polynomial maps on the Riemann sphere such that the postcritical set in the complex plane is bounded. Moreover, we investigate the associated random dynamics of polynomials. We show that for such a polynomial semigroup, if A and B are two connected components of the Julia set, then one of A and B surrounds the other. A criterion for the Jul...

متن کامل

2 3 Fe b 20 09 Dynamics of postcritically bounded polynomial semigroups I : connected components of the Julia sets ∗

We investigate the dynamics of semigroups generated by a family of polynomial maps on the Riemann sphere such that the postcritical set in the complex plane is bounded. The Julia set of such a semigroup may not be connected in general. We show that for such a polynomial semigroup, if A and B are two connected components of the Julia set, then one of A and B surrounds the other. From this, it is...

متن کامل

Dynamical Properties and Structure of Julia Sets of Postcritically Bounded Polynomial Semigroups

We discuss the dynamic and structural properties of polynomial semigroups, a natural extension of iteration theory to random (walk) dynamics, where the semigroup G of complex polynomials (under the operation of composition of functions) is such that there exists a bounded set in the plane which contains any finite critical value of any map g ∈ G. In general, the Julia set of such a semigroup G ...

متن کامل

Semi-hyperbolic fibered rational maps and rational semigroups

This paper is based on the author’s previous work [S4]. We consider fiber-preserving complex dynamics on fiber bundles whose fibers are Riemann spheres and whose base spaces are compact metric spaces. In this context, without any assumption on (semi-)hyperbolicity, we show that the fiberwise Julia sets are uniformly perfect. From this result, we show that, for any semigroup G generated by a com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2013