A Comparative Study on Vector-based and Matrix-based Linear Discriminant Analysis
نویسندگان
چکیده
Recently a kind of matrix-based discriminant feature extraction approach called 2DLDA have been drawn much attention by researchers. 2DLDA can avoid the singularity problem and has low computational costs and has been experimentally reported that 2DLDA outperforms traditional LDA. In this paper, we compare 2DLDA with LDA in view of the discriminant power and find that 2DLDA as a kind of special LDA has no stronger discriminant power than LDA. So, why 2DLDA outperforms LDA in some cases? Through theoretical analysis, we find it is mainly because of the difference of stability under nonsingular linear transformation and linear operation power between 2DLDA and LDA. In experimental parts, the results of experiments give enough proof on our claims and show in some cases the performance of 2DLDA will be possible superior to that of LDA and in other cases the performance of LDA will be possible superior to that of 2DLDA.
منابع مشابه
Video-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملAn Experimental assessment of the performance of Linear and Kernel-based Methods for Face Recognition
This paper presents the results of a comparative study of linear and kernel-based methods for face recognition. These experimental results include: (1) a comparative study of linear methods for feature extraction, such as Principal Component Analysis (PCA), Fisher’s Linear Discriminant Analysis (FDA), and kernel based methods for feature extraction, such as Kernel based Principal Component Anal...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملDetermination of weight vector by using a pairwise comparison matrix based on DEA and Shannon entropy
The relation between the analytic hierarchy process (AHP) and data envelopment analysis (DEA) is a topic of interest to researchers in this branch of applied mathematics. In this paper, we propose a linear programming model that generates a weight (priority) vector from a pairwise comparison matrix. In this method, which is referred to as the E-DEAHP method, we consider each row of the pairwise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 6 شماره
صفحات -
تاریخ انتشار 2011