Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale.

نویسندگان

  • Jingyi Mo
  • Sylvain F Prévost
  • Liisa M Blowes
  • Michaela Egertová
  • Nicholas J Terrill
  • Wen Wang
  • Maurice R Elphick
  • Himadri S Gupta
چکیده

The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (EIF), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Ca(2+) in excitation-contraction coupling in echinoderm muscle: comparison with role in other tissues.

The longitudinal muscle of the body wall of Isostichopus badionotus may be considered a model for excitation-contraction coupling in echinoderm muscle. Other echinoderm muscles are reviewed by comparison with the model. Echinoderm muscle is also of interest as a model for 'mutable collagenous tissue'; however, in that tissue, Ca(2+) has been proposed to function both in living control systems a...

متن کامل

Is muscle involved in the mechanical adaptability of echinoderm mutable collagenous tissue?

The mutable collagenous tissue (MCT) of echinoderms has the capacity to change its mechanical properties in a time scale of less than 1 s to a few minutes under the influence of the nervous system. Although accumulating evidence indicates that the mechanical adaptability of MCT is due primarily to the modulation of interactions between components of the extracellular matrix, the presence of mus...

متن کامل

Bioinspiring Chondrosia reniformis (Nardo, 1847) Collagen-Based Hydrogel: A New Extraction Method to Obtain a Sticky and Self-Healing Collagenous Material

Collagen is a natural and abundant polymer that serves multiple functions in both invertebrates and vertebrates. As collagen is the natural scaffolding for cells, collagen-based hydrogels are regarded as ideal materials for tissue engineering applications since they can mimic the natural cellular microenvironment. Chondrosia reniformis is a marine demosponge particularly rich in collagen, chara...

متن کامل

Quantification of Interfibrillar Shear Stress in Aligned Soft Collagenous Tissues via Notch Tension Testing

The mechanical function of soft collagenous tissues is largely determined by their hierarchical organization of collagen molecules. While collagen fibrils are believed to be discontinuous and transfer load through shearing of the interfibrillar matrix, interfibrillar shear stresses have never been quantified. Scaling traditional shear testing procedures down to the fibrillar length scale is imp...

متن کامل

Mechanical adaptability of sea cucumber Cuvierian tubules involves a mutable collagenous tissue.

Despite their soft body and slow motion, sea cucumbers present a low predation rate, reflecting the presence of efficient defence systems. For instance, members of the family Holothuriidae rely on Cuvierian tubules for their defence. These tubules are normally stored in the posterior coelomic cavity of the animal, but when the sea cucumber is threatened by a potential predator, they are expelle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 42  شماره 

صفحات  -

تاریخ انتشار 2016