Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters?

نویسندگان

  • Foteini Hassiotou
  • Michael Renton
  • Martha Ludwig
  • John R. Evans
  • Erik J. Veneklaas
چکیده

Leaf dry mass per area (LMA) is a composite parameter relating to a suite of structural traits that have the potential to influence photosynthesis. However, the extent to which each of these traits contributes to variation in LMA and photosynthetic rates is not well understood, especially at the high end of the LMA spectrum. In this study, the genus Banksia (Proteaceae) was chosen as a model group, and key structural traits such as LMA, leaf thickness, and density were measured in 49 species. Based on the leaf trait variation obtained, a subset of 18 species displaying a wide range in LMA of 134-507 g m(-2) was selected for analyses of relationships between leaf structural and photosynthetic characteristics. High LMA was associated with more structural tissue, lower mass-based chlorophyll and nitrogen concentrations, and therefore lower mass-based photosynthesis. In contrast, area-based photosynthesis did not correlate with LMA, despite mesophyll volume per area increasing with increases in LMA. Photosynthetic rate per unit mesophyll volume declined with increasing LMA, which is possibly associated with structural limitations and, to a lesser extent, with lower nitrogen allocation. Mesophyll cell wall thickness significantly increased with LMA, which would contribute to lower mesophyll conductance at high LMA. Photosynthetic nitrogen use efficiency and the nitrogen allocation to Rubisco and thylakoids tended to decrease at high LMA. The interplay between anatomy and physiology renders area-based photosynthesis independent of LMA in Banksia species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats.

Mosses are an understudied group of plants that can potentially confirm or expand principles of plant function described for tracheophytes, from which they diverge strongly in structure. We quantified 35 physiological and morphological traits from cell-, leaf- and canopy-level, for 10 ground-, trunk- and branch-dwelling Hawaiian species. We hypothesized that trait values would reflect the disti...

متن کامل

Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living!

Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three ...

متن کامل

Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation.

Foliage structure, chemistry, photosynthetic potentials (V(cmax) and J(max)), and mesophyll diffusion conductance (g(m)) were quantified for 35 broad-leaved species from four sites with contrasting rainfall and soil fertility in eastern Australia. The aim of the study was to estimate the extent to which g(m) and related leaf properties limited photosynthesis (A), focusing on highly sclerophyllo...

متن کامل

Adaptive differentiation of traits related to resource use in a desert annual along a resource gradient.

• Plant resource-use traits are generally hypothesized to be adaptively differentiated for populations distributed along resource gradients. Although nutrient limitations are expected to select for resource-conservative strategies, water limitations may select for either resource-conservative or -acquisitive strategies. We test whether population differentiation reflects local adaptation for tr...

متن کامل

Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae).

Natural selection on photosynthetic performance is a primary factor determining leaf phenotypes. The complex CO2 diffusion path from substomatal cavities to the chloroplasts - the mesophyll conductance (g(m)) - limits photosynthetic rate in many species and hence shapes variation in leaf morphology and anatomy. Among sclerophyllous and succulent taxa, structural investment in leaves, measured a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2010