Characteristics of biphasic slow depolarizing and slow hyperpolarizing potential in frog taste cell induced by parasympathetic efferent stimulation.
نویسندگان
چکیده
When the velocity of capillary blood flow in the frog tongue declined to an intermediate range of 0.2-0.7 mm/s, the glossopharyngeal nerve stimulation induced a biphasic slow depolarizing and slow hyperpolarizing potential (HP) in taste cells. The objective of this work was to examine the generative mechanisms of the biphasic slow potentials. The biphasic slow response was always preceded by a slow depolarizing potential (DP) component and followed by a slow HP component. Intravenous injection of tubocurarine completely blocked the biphasic slow responses, suggesting that both components of the biphasic slow potentials are evoked by the parasympathetic nerve (PSN) fibers. Membrane conductance of taste cells increased during slow DPs and decreased during slow HPs. The reversal potential of either component of a biphasic slow response was the almost same value of -12 mV. An antagonist, L-703,606, for neurotransmitter substance P neurokinin(1) receptor completely blocked both components of the biphasic slow responses. An antagonist, flufenamic acid, for nonselective cation channels on the taste cell membrane completely blocked the biphasic slow responses. These results suggest that PSN-induced biphasic slow responses are postsynaptically elicited in taste cells by releasing substance P at the PSN axon terminals. It is concluded that the slow DP component may be generated by opening one type of nonselective cation channel on taste cells and that the slow HP component may be generated by closing the other type of nonselective cation channel. We discussed that a second messenger inositol 1,4,5-trisphosphate might be related to a slow DP component and another second messenger diacylglycerol might be related to a slow HP component.
منابع مشابه
Title Interaction between gustatory depolarizing receptor potential and efferent - induced slow depolarizing synaptic potential in frog taste cell
Electrical stimulation of parasympathetic nerve (PSN) efferent fibers in the glossopharyngeal nerve induced a slow depolarizing synaptic potential (DSP) in frog taste cells under hypoxia. The objective of this study is to examine the interaction between a gustatory depolarizing receptor potential (GDRP) and a slow DSP. The amplitude of slow DSP added to a tastant-induced GDRP of 10 mV was suppr...
متن کاملAnalysis of slow depolarizing potential in frog taste cell induced by parasympathetic efferent stimulation under hypoxia.
Strong electrical stimulation (ES) of the frog glossopharyngeal (GP) efferent nerve induced slow depolarizing potentials (DPs) in taste cells under hypoxia. This study aimed to elucidate whether the slow DPs were postsynaptically induced in taste cells. After a block of parasympathetic nerve (PSN) ganglia by tubocurarine, ES of GP nerve never induced slow DPs in the taste cells, so slow DPs wer...
متن کاملpotential and efferent - induced slow depolarizing synaptic potential in frog taste cell
Electrical stimulation of parasympathetic nerve (PSN) efferent fibers in the glossopharyngeal nerve induced a slow depolarizing synaptic potential (DSP) in frog taste cells under hypoxia. The objective of this study is to examine the interaction between a gustatory depolarizing receptor potential (GDRP) and a slow DSP. The amplitude of slow DSP added to a tastant-induced GDRP of 10 mV was suppr...
متن کاملTaste cell responses in the frog are modulated by parasympathetic efferent nerve fibers.
We studied the anatomical properties of parasympathetic postganglionic neurons in the frog tongue and their modulatory effects on taste cell responses. Most of the parasympathetic ganglion cell bodies in the tongue were found in extremely small nerve bundles running near the fungiform papillae, which originate from the lingual branches of the glossopharyngeal (GP) nerve. The density of parasymp...
متن کاملThe origin of slow potentials on the tongue surface induced by frog glossopharyngeal efferent fiber stimulation.
When the glossopharyngeal (GP) nerve of the frog was stimulated electrically, electropositive slow potentials were recorded from the tongue surface and depolarizing slow potentials from taste cells in the fungiform papillae. The amplitude of the slow potentials was stimulus strength- and the frequency-dependent. Generation of the slow potentials was not related to antidromic activity of myelina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical senses
دوره 32 9 شماره
صفحات -
تاریخ انتشار 2007