Sunflower Hybrid Breeding: From Markers to Genomic Selection
نویسندگان
چکیده
In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits.
منابع مشابه
Identification of Microsatellite Markers Linked with Genomic Regions Involved in Resistance to Basal Stem Rot Disease Isolates in Oily Sunflower (Helianthus annuus L.) under Controlled Conditions
Sunflower (Helianthus annuus L.) is an important crop that its oil has nutritional and high economic value. Basal stem rot, caused by Sclerotinia sclerotiorum and S. minor, is one of the important and devastating disease of sunflower. The use of resistant cultivars is considered as the most important and effective method to control the disease. In this study, the reaction of 100 oily sunflower ...
متن کاملGene-Based Marker to Differentiate Among B, A, and R Lines in Hybrid Production of Rapeseed Ogura System
Background: In plant breeding program to produce hybrid varieties, pair of male sterile and restorer fertility lines are required. Differentiation of lines possessing restorer fertility allele from the lines lacking it remove the need for the progeny test, and thus reducing the time and the cost in the hybrid production procedure. Canola breeding program in Iran has concentrate...
متن کاملAssessment of genetic diversity among sunflower genotypes using microsatellite markers
Genetic diversity estimation of plant materials is one of the important pre-breeding activities in breeding field crops. Twenty-one microsatellite markers used to assess genetic diversity and relationship of 68 sunflower genotypes (Helianthus annuus L.). All of 21 pairs of SSR (Simple Sequence Repeats) markers produced a total number of 49 polymorphic bands. DNA fragments ranged from 9...
متن کاملApplication of DNA Molecular Markers in Plant Breeding (Review article)
Plant Breeding has utilized a wide range of techniques and methods to improve the quality and quantity of plants. The molecular markers are the tools that have provided a new perspective for plant breeding advancements. This article has reviewed the various advantages and uses of molecular markers and the utilization of the high potential of natural polymorphisms within communities, combined wi...
متن کاملDiversifying sunflower germplasm by integration and mapping of a novel male fertility restoration gene.
The combination of a single cytoplasmic male-sterile (CMS) PET-1 and the corresponding fertility restoration (Rf) gene Rf1 is used for commercial hybrid sunflower (Helianthus annuus L., 2n = 34) seed production worldwide. A new CMS line 514A was recently developed with H. tuberosus cytoplasm. However, 33 maintainers and restorers for CMS PET-1 and 20 additional tester lines failed to restore th...
متن کامل