Inhibition of parathyroid hormone-responsive adenylate cyclase in clonal osteoblast-like cells by transforming growth factor alpha and epidermal growth factor.
نویسندگان
چکیده
The effects of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Recombinant TFG-alpha and EGF incubated with UMR-106 cells for 48 h each produced concentration-dependent inhibition of PTH-responsive adenylate cyclase, with maximal inhibition of 38-44% at 1-3 ng/ml of either growth factor. TGF-alpha and EGF also inhibited beta-adrenergic agonist (isoproterenol)-stimulated adenylate cyclase by 32%, but neither growth factor affected enzyme response to prostaglandin or basal (unstimulated) activity. Nonreceptor-mediated activation of adenylate cyclase by forskolin and cholera toxin was inhibited 18-20% by TGF-alpha and EGF. Pertussis toxin augmented PTH-stimulated adenylate cyclase, suggesting modulation of PTH response by a functional inhibitory guanine nucleotide-binding regulatory component of the enzyme. However, pertussis toxin had no effect on TGF-alpha inhibition of PTH response. Growth factor inhibition of PTH response was time-dependent, with maximal inhibition by 4-12 h of TGF-alpha exposure, and was reduced by prior treatment of UMR-106 cells with cycloheximide. TGF-alpha was not mitogenic for UMR-106 cells. The results indicate that TGF-alpha and EGF selectively impair PTH- and beta-adrenergic agonist-responsive adenylate cyclase of osteoblast-like cells. Growth factor inhibition of adenylate cyclase may be exerted at the receptor for stimulatory agonist and at nonreceptor components excluding pertussis toxin-sensitive guanine nucleotide-binding regulatory proteins. The inhibitory action of growth factors may also require protein synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Peptide in Transfected Rodent Cell Lines Growth Factor-like Properties of Parathyroid Hormone-related
Parathyroid hormone-related peptide (PTHrP) was originally isolated from tumors associated with the development of hypercalcémie in vivo. Analyses of PTHrP gene expression have demonstrated that PTHrP is also produced in a wide variety of normal fetal and adult nonneoplastic tissues. The results of recent experiments have demonstrated that PTHrP is a growth factor-regulated gene, and different...
متن کاملParathyroid hormone (PTH) down-regulates PTH/PTH-related protein receptor gene expression in UMR-106 osteoblast-like cells via a 3',5'-cyclic adenosine monophosphate-dependent, protein kinase A-independent pathway.
Parathyroid hormone (PTH) regulates osteoblast function via a G protein-linked PTH/PTH-related protein (PTHrP) receptor. We have studied the mechanisms of PTH/PTHrP receptor gene repression by PTH in UMR-106 osteoblast-like cells. Inhibition of PTH/PTHrP receptor mRNA expression by rat (r) PTH(1-34) and Insulin-like growth factor-I (IGF-I) at 10(-7)M was significant at 1 h and 3 h, and maximal ...
متن کاملStimulation of extracellular signal-regulated kinase by pituitary adenylate cyclase-activating polypeptide in alpha T3-1 gonadotrophs.
The putative hypophysiotropic factor pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates glycoprotein hormone alpha-subunit (alpha GSU) gene transcription and secretion in the clonal gonadotroph alpha T3-1 cell line. The specific signalling pathways regulating these actions of PACAP have not been clearly defined. We have examined the possibility that mitogen activated protein ...
متن کاملMenin and TGF-beta superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast.
PITUITARY: Menin is a Smad3-interacting protein; inactivation of menin blocks transforming growth factor (TGF)-beta and activin signaling, antagonizing their growth-inhibitory properties in anterior pituitary cells. Menin is also required for the activin-induced inhibition of prolactin expression mediated by the Smads and the transcription factor, Pit-1. The interaction between menin and Smad3 ...
متن کاملMorphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin.
The ultrastructural and biochemical properties of four clonal osteogenic sarcoma lines, UMR 104, 105, 106, and 108, have been compared with uncloned osteogenic sarcoma cells and normal osteoblast-rich cells derived from newborn rat calvaria. High alkaline phosphatase activity and activation of adenylate cyclase by parathyroid hormone were used as biochemical markers of osteoblastic cells. Cloni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 262 33 شماره
صفحات -
تاریخ انتشار 1987