Pseudospectral Methods for Computing the Multiple Solutions of the Schrödinger Equation
نویسندگان
چکیده
In this paper, we first compute the multiple non-trivial solutions of the Schrödinger equation on a square, by using the Liapunov-Schmidt reduction and symmetry-breaking bifurcation theory, combinedwith Legendre pseudospectralmethods. Then, starting from the non-trivial solution branches of the corresponding nonlinear problem, we further obtain the whole positive solution branch with D4 symmetry of the Schrödinger equation numerically by pseudo-arclength continuation algorithm. Next, we propose the extended systems, which can detect the fold and symmetrybreaking bifurcation points on the branch of the positive solutions with D4 symmetry. We also compute the multiple positive solutions with various symmetries of the Schrödinger equation by the branch switchingmethod based on the Liapunov-Schmidt reduction. Finally, the bifurcation diagrams are constructed, showing the symmetry/peak breaking phenomena of the Schrödinger equation. Numerical results demonstrate the effectiveness of these approaches. AMS subject classifications: 35Q55, 35J25, 37M20, 65M70
منابع مشابه
An improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملHigh order finite difference algorithms for solving the Schrödinger equation in molecular dynamics
The view of considering global Pseudospectral methods ~Sinc and Fourier! as the infinite order limit of local finite difference methods, and vice versa, finite difference as a certain sum acceleration of the pseudospectral methods is exploited to investigate high order finite difference algorithms for solving the Schrödinger equation in molecular dynamics. A Morse type potential for iodine mole...
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملMultiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis
In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...
متن کامل