Novel role for the NMDA receptor redox modulatory site in the pathophysiology of seizures.
نویسندگان
چکیده
Redox-active compounds modulate NMDA receptors (NMDARs) such that reduction of NMDAR redox sites increases, and oxidation decreases, NMDAR-mediated activity. Because NMDARs contribute to the pathophysiology of seizures, redox-active compounds also may modulate seizure activity. We report that the oxidant 5, 5'-dithio-bis(2-nitrobenzoic acid) (DTNB) and the redox cofactor pyrroloquinoline quinone (PQQ) suppressed low Mg(2+)-induced hippocampal epileptiform activity in vitro. Additionally, in slices exposed to 4-7 microM bicuculline, DTNB and PQQ reversed the potentiation of evoked epileptiform responses by the reductants dithiothreitol and Tris(2-carboxyethyl)phosphine (TCEP). NMDA-evoked whole-cell currents in CA1 neurons in slices were increased by TCEP and subsequently decreased by DTNB or PQQ at the same concentrations that modulated epileptiform activity. However, DTNB and PQQ had little effect on baseline NMDA-evoked currents in control medium, and PQQ did not alter NMDAR-dependent long-term potentiation. In contrast, in slices returned to control medium after low Mg(2+)-induced ictal activity, DTNB significantly inhibited NMDAR-mediated currents, indicating endogenous reduction of NMDAR redox sites under this epileptogenic condition. These data suggested that PQQ and DTNB suppressed spontaneous ictal activity by reversing pathological NMDAR redox potentiation without inhibiting physiological NMDAR function. In vivo, PQQ decreased the duration of chemoconvulsant-induced seizures in rat pups with no effect on baseline behavior. Our results reveal endogenous potentiation of NMDAR function via mass reduction of redox sites as a novel mechanism that may enhance epileptogenesis and facilitate the transition to status epilepticus. The results further suggest that redox-active compounds may have therapeutic use by reversing NMDAR-mediated pathophysiology without blocking physiological NMDAR function.
منابع مشابه
P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملThe role of hippocampal (CA1) NMDA receptor on learning and memory in presence and absence of zinc chloride in adult male rats
Introduction: Zinc is an essential trace element that plays an important role in synaptic plasticity and modulating the activity of CNS and involve in learning and memory. Synaptic vesicle zinc in the hippocampus area exerting modulatory effects on NMDA glutamate receptor. Method: In this experiment the effects of NMDA agonist and antagonist administration intra hippocampus on passive avoidan...
متن کاملThe neuroprotective agent ebselen modifies NMDA receptor function via the redox modulatory site.
Ebselen is a seleno-organic compound currently in clinical trials for the treatment of ischemic stroke and subarachnoid hemorrhage. Its putative mode of action as a neuroprotectant is via cyclical reduction and oxidation reactions, in a manner akin to glutathione peroxidase. For this reason, we have investigated the effects of ebselen on the redox-sensitive NMDA receptor. We have found that ebs...
متن کاملInteraction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-D-aspartate receptor redox modulatory site.
The putative essential nutrient pyrroloquinoline quinone (PQQ) can efficiently mediate reduction and oxidation reactions in a variety of systems. Therefore, we investigated whether this compound could alter the function of the NMDA receptor via a recently described redox modulatory site. In rat cortical neurons in vitro, 50 microM PQQ could reverse the enhancement of 30 microM NMDA-induced whol...
متن کاملP145: The Role of γ-Aminobutyric Acid Receptor in The Social Anxiety Disorder
Social anxiety disorder (SAD) is the one of the most common anxiety disorders. Despite its high prevalence, the disorder is still considerably undiagnosed and untreated. The disease places a massive burden on patient’s lives, affecting not only their social interactions but also their educational and professional activities, thereby constituting a severe disability. γ-aminobutyric acid (GABA) s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2000