Dual billiards in the hyperbolic plane*
نویسندگان
چکیده
We study an area preserving map of the exterior of a smooth convex curve in the hyperbolic plane, defined by a natural geometrical construction and called the dual billiard map. We consider two problems: stability and the area spectrum. The dual billiard map is called stable if all its orbits are bounded. We show that both stable and unstable behaviours may occur. If the map at infinity has a hyperbolic periodic orbit, then the dual billiard map has orbits escaping to infinity. On the other extreme, if the map at infinity is smoothly conjugated to a Diophantine irrational rotation of the circle, then the dual billiard map is stable. The area spectrum is the set of extremal areas of n-gons, circumscribed about the dual billiard curve; this is to the dual billiard what the length spectrum is to the usual, inner, one. We show that the area spectrum has an asymptotic expansion in even negative powers of n as n → ∞. The first coefficient of this expansion is the area of the dual billiard curve, and the next is, up to a constant, the cubed integral of the cube root of its curvature. We describe the curves that are relative extrema of these two functionals and show that they are the trajectories of the pseudospherical pendulum with various gravity directions. Mathematics Subject Classification: 37E40, 37J50, 70H08
منابع مشابه
Outer Billiards and Tilings of the Hyperbolic Plane
In this paper we present new results regarding the periodicity of outer billiards in the hyperbolic plane around polygonal tables which are tiles in regular two-piece tilings of the hyperbolic plane.
متن کاملHyperbolic Magnetic Billiards on Surfaces of Constant Curvature
We consider classical billiards on surfaces of constant curvature, where the charged billiard ball is exposed to a homogeneous, stationary magnetic field perpendicular to the surface. We establish sufficient conditions for hyperbolicity of the billiard dynamics, and give lower estimation for the Lyapunov exponent. This extends our recent results for non-magnetic billiards on surfaces of constan...
متن کاملResearch projects
1 Billiards and related systems 1.1 Polygonal outer billiards in the hyperbolic plane The outer billiard about a convex polygon P in the plane R 2 is a piece-wise isometry, T , of the exterior of P defined as follows: given a point x outside of P , find the support line to P through x having P on the left, and define T (x) to be the reflection of x in the support vertex. See [10, 35]. Figure 1:...
متن کاملHyperbolic Billiards on Surfaces of Constant Curvature
We establish sufficient conditions for the hyperbolicity of the billiard dynamics on surfaces of constant curvature. This extends known results for planar billiards. Using these conditions, we construct large classes of billiard tables with positive Lyapunov exponents on the sphere and on the hyperbolic plane.
متن کاملIntroducing projective billiards
We introduce and study a new class of dynamical systems, the projective billiards, associated with a smooth closed convex plane curve equipped with a smooth field of transverse directions. Projective billiards include the usual billiards along with the dual, or outer, billiards.
متن کاملOn Polygonal Dual Billiard in the Hyperbolic Plane
Given a compact convex plane domain P , one defines the dual billiard transformation F of its exterior as follows. Let x be a point outside of P . There are two support lines to P through x; choose one of them, say, the right one from x’s view-point, and define F (x) to be the reflection of x in the support point. This definition applies if the support point is unique; otherwise F (x) is not de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002