A reference model weighting-based method for robust speech recognition

نویسندگان

  • Yuan-Fu Liao
  • Yh-Her Yang
  • Chi-Hui Hsu
  • Cheng-Chang Lee
  • Jing-Teng Zeng
چکیده

In this paper a reference model weighting (RMW) method is proposed for fast hidden Markov model (HMM) adaptation which aims to use only one input test utterance to online estimate the characteristic of the unknown test noisy environment. The idea of RMW is to first collect a set of reference HMMs in the training phase to represent the space of noisy environments, and then synthesize a suitable HMM for the unknown test noisy environment by interpolating the set of reference HMMs. Noisy environment mismatch can hence be efficiently compensated. The proposed method was evaluated on the multi-condition training task of Aurora2 corpus. Experimental results showed that the proposed RMW approach outperformed both the histogram equalization (HEQ) method and the distributed speech recognition (DSR) standard ES 202 212 proposed by European Telecommunications Standards Institute (ETSI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech recognition using an enhanced FVQ based on a codeword dependent distribution normalization and codeword weighting by fuzzy objective function

The paper presents a new variant of parameter estimation methods for discrete hidden Markov models(HMM) in speech recognition. This method makes use of a codeword dependent distribution normalization(CDDN) and a distance weighting by fuzzy contribution in dealing with the problems of robust state modeling in a FVQ based modeling. The proposed method is compared with the existing techniques usin...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

IMPROVED HMM ENTROPY FOR ROBUST SUB−BAND SPEECH RECOGNITION (ThuPmOR1)

In recent years, sub−band speech recognition has been found useful in robust speech recognition, especially for speech signals contaminated by band−limited noise. In sub−band speech recognition, full band speech is divided into several frequency sub−bands and then sub−band feature vectors or their generated likelihoods by corresponding sub−band recognizers are combined to give the result of rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007